Electron Muon Ranger (EMR) Commissioning

François Drielsma on behalf of the EMR Group

University of Geneva

June 22, 2015

- - E

EMR commissioning time line

- \leq September 2013
 - $\rightarrow\,$ Construction of the detector in Geneva
 - $\rightarrow\,$ Commissioned with cosmic data, no dead channels
- End of September 2013
 - $\rightarrow\,$ Installation of the EMR in the MICE
 - $\rightarrow\,$ Hardware and software integrity tested with cosmic DAQ

October 2013

 $ightarrow\,$ 3-4 weeks Step I beam DAQ

March 2014

ightarrow Detector's 2832 channels fully calibrated with cosmics (Step I)

October 2014

- $\rightarrow~{\sf EMR}$ readout hardware extensively upgraded
- $\rightarrow\,$ Commissioning of the detector after the upgrade (Step IV)

Issues fixed since the October 2014 update						
PROBLEM	SOLUTION					
1 VHDC fails to configure its FEBs	Spare cable used (✓)					
New HVPSU won't start	Controller fixed by CAEN (\checkmark)					
LED LV channel malfunctioning	Channel fixed, spare received (\checkmark)					
Cosmic DAQ code bugging	Fixed on site (✓)					
2 noisy MAPMTs (in planes 9, 10)	Not overflowing * (\checkmark)					
1 of the new SAPMT down	Replaced, fixed (✓)					

・ロト・(局)・(目)・(目)・(日)・(の)

EMR Rack Elements

Controls and power supplies:

- 47 U rack
- AC fan system (back of the rack, top of the rack, EMR box)
- Remote controlled AC power supply
 - $\rightarrow\,$ general switch, needs update for individual
- HVPSU (photomultipliers)
- LVPSU (trigger distribution boards, LED driver, fans)
 - $\rightarrow\,$ new LVPSU arrived and installed
- New VME (and NIM) crate(s)
 - $\rightarrow~\text{VME}$ crate remote controlled through <code>telnet</code>

EMR Hardware: LVPSUs

LVPSU 1

- 1 channel for the LED driver
- 1 channel for the fans
- 1 channel for the fan-out boards
- \rightarrow Fully operational, LED channel fixed since April

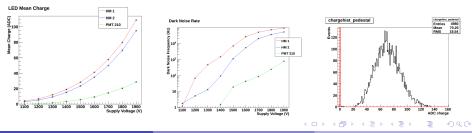
New LVPSU 2


- 2 channels for 48 FEBs (\sim 35 A)
- 1 channel for 48 DBBs (\sim 25 A)
- $\rightarrow~$ OVC fixed, fully functional since April

(\checkmark) Both LVPSUs are controllable remotely using telnet

EMR Hardware: HVPSU

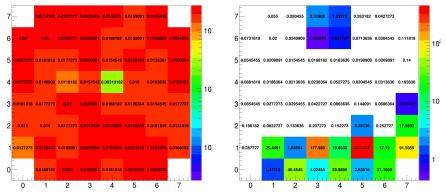
120 channels HVPSU


- 48 channels for the SAPMTs (1500V)
- 48 channels for the MAPMTs (700V)
- 1 dead channel, 23 spares left
- $\rightarrow\,$ Fully operational and stable
- (\checkmark) Accessible remotely, first pass at the controls (Hanlet)

EMR electronics: new SAPMTs since October 2014

Measured mean charge for MIP signals:

- acquisition of 150k MIP-like signals in the range (1100-1900)V
- measurement of the mean charge for each setting
- $\rightarrow \overline{Q_{Hm}} \gg \overline{Q_{Ph}}$ over the whole range Measured level of dark noise:
 - recording of the DN frequency over 5 minutes in the same range
 - measurement of the average DN frequency for each setting
- \rightarrow DN 2 orders of magnitude higher for Hamamatsu PMTs
- \rightarrow Not to worry, as the DN/Signal separation is ensured

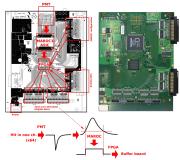

François Drielsma (UniGe)

EMR Commissioning

Preliminary Noise Analysis

Noise has been unveiled in several of the FEBs

- 39 practically noiseless planes ($< 1 \text{ ms}^{-1}$ in each channel)
- 7 mildly noisy planes ($< 100 \text{ ms}^{-1}$)
- 2 very noisy planes (> 100 ms $^{-1}$), overflow danger

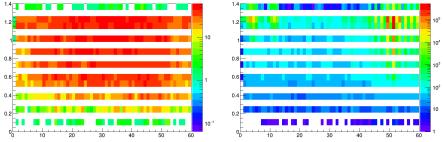

Noise Rate [ms⁻¹]

Noise Rate [ms⁻¹]

Front End Board ASIC

The ASIC used in the EMR is a Multi-Anode ReadOut Chip (MAROC):

- 64 inputs/outputs
- Shapes the signal and measures a Time over Threshold
- Fast response
- Tunable pre-amplifier gain up to a factor 4 with 6 % accuracy
- Tunable threshold value

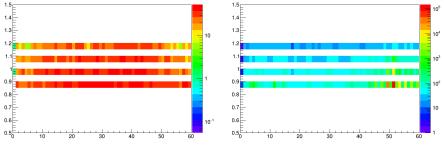

- \rightarrow Hasn't been studied extensively
- \rightarrow Study of the threshold influence on acceptance
- \rightarrow Correction of the MAPMT non-uniformity and reject noise

Pre-amplifier gain tuning

2000 cosmics acquired for gains ranging from 0 to 2 (8 bits)

- number of hits measured within the primary (useful)
- number of hits measured outside (should be as close to 0 as possible)
- \rightarrow Default setting is x1, going down to x.75 does no deprecate the amount of hits but would reduce the energy resolution (smaller ToTs)

 \rightarrow The noise would be reduced by 1 order of magnitude to \sim 50 hits ms^{-1} $_{\rm Primary\,hits}$


Threshold gain tuning

2000 cosmics acquired for threshold ranging from 0 to 2V (10 bits)

- number of hits measured within the primary (useful)
- number of hits measured outside (should be as close to 0 as possible)

 \rightarrow Default setting is .9, going up to 1 does no deprecate the amount of hits but would reduce the energy resolution (smaller ToTs)

 \rightarrow The noise would be reduced by 1 order of magnitude to \sim 50 hits $\rm ms^{-1}_{\rm Primary\,hits}$

Noise: current status

Potential sources of noise

- Noisy Front-end boards (FEBs)
- Noisy MAPMT (can be replaced, tricky)

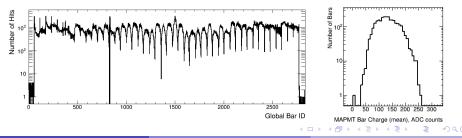
Front-end electronics

- Gain study under way (each channel can be tuned individually)
- Threshold study under way (each board can be tuned individually)
- \rightarrow Tuning down the MAPMT reduces the level of the noise
- \rightarrow Noise could be reduced to acceptable levels by tuning down the gain or raising the threshold of the MAROC
- \rightarrow New FEBs under production, MAPMTs spares available for swapping
- \rightarrow Noise does not seem to overflow the DBB buffer at the moment

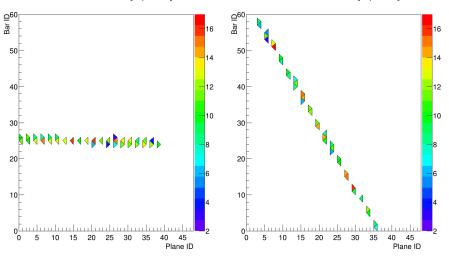
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

EMR code integration into MAUS

Essential parts of the EMR code are integrated in MAUS


- MC fully functional
- MC Digitization complete, data unpacking working
- Advanced reconstruction fully operational
 - ightarrow Range, charge, matching, PID variables
- Tests developed for the mappers
- Step I calibration and geometry in the CDB
- Cartesian output integrated with errors
- Reducer and data quality flags under production

\rightarrow Fully functional as is, requires improvements


EMR charge calibration

A calibration program exists and need enough cosmic data:

- **calibration** uses cosmic data to evaluate the photomultipliers irregularities and give a parameter for each channel
 - ran in March 2014 and correction map included in MAUS (Step I)
 - ▶ 300k (~ 1 week) cosmic trigger needed in the EMR
 - Measurement of the mean charge for each bar i in a plane j, $\overline{Q_{ij}}$
 - ▶ Calculation of the correction factor $\epsilon_{ij} = \overline{Q_{ij}}/\overline{Q}$, with \overline{Q} global average
- \rightarrow More cosmic data needs to be taken in **August 2015** to account for the SAPMT replacement (no beam time required)

Cosmic muon event

Time over Threshold [X planes]

Time over Threshold [Y planes]

EMR Commissioning

Step IV commisionning

The EMR Step IV commissioning will happen in October 2015

- \rightarrow Timing calibration (primary hits to trigger time)
- \rightarrow PID consistency check (pion, positron beams)
- \rightarrow Muon beams

total triggers at TOF1	momentum at Q9	proton absorber	rate at TOF1	triggers at TOF1	spills	momentum			positive	
						at Q9	at D2	at target	beam	run
		83	11	6289	563	143	230	277	6+	5435
		83	11	18558	1616	143	230	277	e+	5436
2484	230.1			24847	total triggers:					
		83	14	33914	2362	150	240	289	e+	5433
		83	15	40000	2657	150	240	289	6+	5434
73914	240.26			73914	total triggers:					
		83	23	18980	826	172	271	325	e+	5430
		83	22	7023	322	172	271	325	e+	5431
		83	23	51451	2199	172	271	325	e+	5432
77454	270.75			77454	total triggers:					
		83	39	60511	1564	193	300	360	e+	5428
		83	35	21860	630	193	300	360	e+	5429
82371	300.38			82371	total triggers:					
		83	31	100000	3234	217	334	400	e+	5423
		0	40	8000	202	217	334	400	e+	5424
108000	334.24			108000	total triggers:					
		83	54	89092	1637	235	360	431	e+	5421
89092	360.48			89092	total triggers:					
		83	22	50427	2321	243	269	275	pi+	5451
50427	268.59			50427	total triggers:					
		83	57	46751	814	256	390	466	e+	5418
		83	59	29410	498	256	390	466	e+	5419
		83	70	26640	381	256	390	466	e+	5420
10280	390.11			102801	total triggers:					

一日、

EMR status summary

EMR hardware upgrade completed and commissioned

- SAPMT commissioned, 48 of them working and efficient (\checkmark)
- HVPSU ightarrow fully operational, first control interface produced (\checkmark)
- 2 LVPSUs \rightarrow fully functional and in final state (\checkmark)
- CAEN VME crate \rightarrow functional (\checkmark)

EMR software

- Completely functional MC and reconstruction (new data structure) Outstanding tasks
 - Investigate the MAROC on the FEBs further (\mathbf{X})
 - Try replacing the MAPMTs on the noisy plane (X)
 - Produce a reducer and data quality flags (X)
 - Calibrate the detector and output the ϵ_{ij} (1 or 2 week(s) in August)

Ready for Step IV

イロト イポト イヨト イヨト 二日