Issues

Improvements

Analysi

What's Left

Kalman Filter Overhaul

C Hunt K Long, J Pasternak

22nd June 2015. CM42

Issues

Improvements

Analysis

What's Left

The Kalman Filter

What is it?

An algorithm from signal processing theory, designed to deduce a system's current state (x) from continuous or discrete external measurements.

- If we consider a helical (straight) track as our system, the state is 5 (4) component phase space vector and the measurements correspond to the tracker planes
 - Our "signal" is now a continuous function of *z*, rather than the conventional time. So we can use a Kalman Filter!

Introduction	lssues	Improvements	Analysis	What's Left
	Г	he Basics		

To fully define the system we need two things:

- The Propagator uniquely defines the linear transition from the current position to some other arbitrary position. A Straight Track or a Helical Track!
- 2. **The Measurement** uniquely defines the linear transformation involved in making a single measurement of the system state. The fiber channels!

$$\mathbf{x}_k = \mathbf{F}_k \mathbf{x}_{k-1}$$

 $\mathbf{m}_k = \mathbf{M}_k \mathbf{x}_k$

where ${\bm F}$ is the propagator matrix and ${\bm M}$ is the measurement matrix.

Improvements

The Basics

With a deterministic linear propagator and a deterministic linear measurement, the Kalman Filter is statistically identicle to a linear least squares fit without knowledge of measurement errors.

But we can do better!

We may also include meaurement and process noises such the fit is now *the* optimal linear fitter taking into account all correlations and errors.

$$\mathbf{x}_k = \mathbf{F}\mathbf{x}_{k-1} + \epsilon_k$$
$$\mathbf{m}_k = \mathbf{M}_k \mathbf{x}_k + \omega_k$$

where ϵ is the processs noise and ω is the measurement noise.

Issues

Improvements

Analysis

What's Left

Kalman in MICE

Propagator

A helix derived from the the position and momentum components with deterministic energy loss, or a straight line propagator derived from the position and gradient components.

The process noise is derived from the Highland Formula for Multiple Coulomb Scattering.

Measurement

Reconstruct α the distance of the SciFi Cluster from the center of the plane, perpendicular to the direction of the fibers.

The measurement noise is the RMS of a uniform top hat signal with a width equal to the fiber channel width - $w/\sqrt{12}$

The Original Implementation (Appologies for the lack of plots.)

Attempts to fully characterise the fit showed up some fundamental issues:

- If we turned off the process noise, Kalman did not agree with Pattern Recognition
- If we stopped the Geant4 Multiple Couloumb Scattering and Energy loss Kalman was not perfect
- If we gave Kalman a perfect seed it should not really have changed
- It was not extensible for future upgrades (field stepping, other implementations, etc).

The fit did however work. So we need to be careful as the process noise gives the fit a lot of flexibility to hide some fundamental issues!

Issues

Improvements

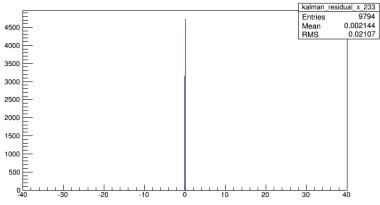
What's Left

What We Did

- 1. Kept the complex algorithms MCS, Eloss, coordinate transformations.
- 2. Restructured the core of the code Kalman is now a standalone abstract algorithm that can be used by anyone!
- 3. Wrote the code to convert Clusters \rightarrow State Vectors \rightarrow SciFi Tracks.
- 4. Wrote specific Straight Track and Helical Track propagators, and the SciFi Measurement Class.
- 5. Wrote a Spacepoint trackfit to test the algorithm.
- 6. Fixed bugs and added functionality to the SciFi Recon and SciFi Geometry classes.

... and of course - extensive testing!

Issues


Improvements

Analysis

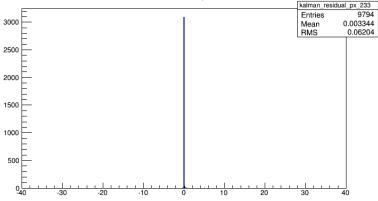
What's Left

Perfect Kalman

Residual x

Perfect tracks in a perfect tracker - x Residuals [mm]

Issues


Improvements

Analysis

What's Left

Perfect Kalman

Residual px

Perfect tracks in a perfect tracker - p_{χ} Residuals [MeV/c]

Issues


Improvements

Analysis

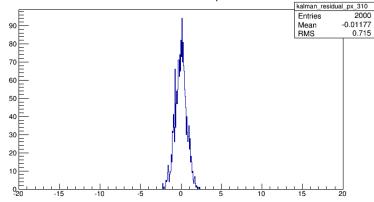
What's Left

Half-Way

kalman residual x

Full Tracker, No Energy Loss in Recon, No MCS in Recon, Geant4 with Mean Energy Loss only. x Residual [mm]

Issues


Improvements

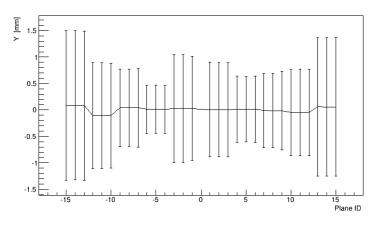
Analysis

What's Left

Half-Way

kalman residual px

Full Tracker, No Energy Loss in Recon, No MCS in Recon, Geant4 with Mean Energy Loss only. p_x Residual [MeV/c]


Issues

Improvements

Analysis

What's Left

Full Implementation

Full Tracker Sim, Eloss and MCS included in Fit. Full Geant4 Sim. y Resolution [mm]

Issues

Improvements

Analysis

What's Left

What's Left?

Still a few loose ends to tie up for the helix fit:

- E-Loss is slightly wrong needs fixing.
- Charge determination still has a small bug
- Statistics need verifing properly Chi-Squared Values are a little *too* good!
- Effect of non-uniform fields on fit In Progess!
- Investigate other propagtors: Field stepper, 2nd order filtering, different models. . .

Current code is awaiting the next release. Bug fixes to follow in the comming week(s).

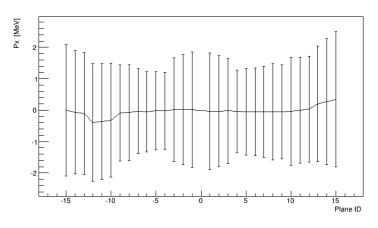
Critical to MICE Comissioning, the straight track fit is nearly perfect!

Currently being used in a quick tracker alignment study.

Watch This Space!

Introduction	Issues	Improvements	Analysis	What's Left

This slide intentionally left blank.


Issues

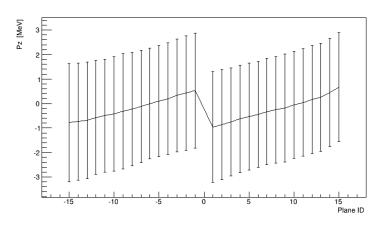
Improvements

Analysis

What's Left

Full Implementation

Full Tracker Sim, Eloss and MCS included in Fit. Full Geant4 Sim. p_x Resolution [MeV/c]


Issues

Improvements

Analysis

What's Left

Full Implementation

Full Tracker Sim, Eloss and MCS included in Fit. Full Geant4 Sim. p_z Resolution [MeV/c]

Issues

Improvements

What's Left

Full Implementation (Straights)

Full Tracker Sim, Eloss and MCS included in Fit. Full Geant4 Sim. x Resolution [mm]

