

MICE Demonstration of Ionization Cooling

JB. Lagrange, J. Pasternak

Outline

- Demo lattice
- Optimization
 - Lattice Length
 - Beta-value (Preliminary)
- © 140 MeV/c & 240 MeV/c (Preliminary)
- Summary and future plans

Outline

- Demo lattice
- Optimization
 - Lattice Length
 - Beta-value (Preliminary)
- @140 MeV/c & 240 MeV/c (Preliminary)
- Summary and future plans

Demo Lattice

Radiation shutter and movable secondary LiH absorber.

Initial beam

- Pure muon beam, ~10 000 particles
- Position: before first plane upstream tracker (after diffuser)
- Gaussian distribution
- Normalised rms longitudinal emittance = 20 mm
- Normalised rms transverse emittance = 6 mm

Cuts

- PID cut
- Transmission cut
- Radial cut r < 200 mm, at first and last plane.

Outline

- Demo lattice
- Optimization
 - Lattice Length
 - Beta-value (Preliminary)
- Summary and future plans

Optimization

- Optimization through 2 parameters
 - phase advance of the channel
 - Strength of the focusing elements

Phase advance

- Phase advance is computed from the last plane of the upstream tracker to the first plane of the downstream tracker.
- Different phase advances for different lattices show the same effect: phase advance should stay between half-integer resonances. 630 deg. (1.75×360 deg.) seems to be the optimum:
 - Best momentum acceptance,
 - smallest non-linear effects (chromatic mismatch downstream minimized).

Focusing strength

- Once the phase advance and values of beta at the absorbers is decided, only free parameters are
 - the length between SS and Cavity module,
 - the length between the AFCs.
- Different cases show that M1 should be minimized to limit non-linearities. so the length SS-Cavity should be kept minimum (case of the CM41 lattice)
- Different cases show that large values of beta in the FC trigger strong non-linearities.
 - ⇒ Optimum of the length AFC-AFC.

AFC - AFC Length

- Different lengths have been tested
 - L₀=1725.5 mm (updated CM41 lattice)
 - L_1 =1349.0 mm (L_0 -376.5 mm)
 - $L_2=1538.5 \text{ mm } (L_0-187.0 \text{ mm})$
 - $L_3=1632.0 \text{ mm} (L_0-93.5 \text{ mm})$
 - \bullet L₄=1678.8 mm (L₀-46.7 mm)
- Best performances for length L₀, L₃ & L₄.
 - \Rightarrow L₄ seems to be the best lattice.

AFC-AFC Optimization

Transverse beta

AFC-AFC Optimization

4D emittance

Optimized Lattice

Outline

- Demo lattice
- Optimization
 - Lattice Length
 - Beta-value (Preliminary)
- Summary and future plans

Beta-value optimization (Preliminary)

- Different values of β at the central absorber are being tested:
 - \circ β_0 (53 cm)
 - \circ β_1 (46 cm)
- Same performance for β_0 and β_1 .
 - ⇒ Robust lattice.

Beta-value optimization

Transverse beta

Beta-value optimization

4D emittance

Outline

- Demo lattice
- Optimization
 - Lattice Length
 - Beta-value (Preliminary)
- Summary and future plans

Preliminary: 140 MeV/c

Transverse beta

Preliminary: 140 MeV/c

4D emittance

Preliminary: 240 MeV/c

Transverse beta

Preliminary: 240 MeV/c

4D emittance

Outline

- Demo lattice
- Optimization
 - Lattice Length
 - Beta-value (Preliminary)
- Summary and future plans

Summary

- Optical parameters have been studied and optimization of the length have been done.
- Best performance for length L_4 (5.5% 4D cooling).
- Robust performance for different betas.
- Preliminary results for 140 MeV/c and 240 MeV/c.

Future plans

- Finalize the current settings (hours away from completion)
- Scan of emittances for
 - 140 MeV/c settings,
 - 200 MeV/c settings,
 - 240 MeV/c settings.
- Paper including all settings to be finalized soon (Draft v0.0 ready).

Thank you for your attention

Back-up slides

CM41 Demo Lattice

Magnetic field

CM41 lattice

Transverse beta

CM41 lattice

4D emittance

CM41 lattice

6D emittance

