
CRAB HIGH-POWER CONTROL AND INTERLOCKS

Overview

Interfaces

Planning

- One PC to control 2 cavities in one cryo-module
- Standard PLC and hardware components

Cavity to control rack distance?

- Expected PLC cycle time 2ms
 - Do we need faster reaction time ?
 - Ex: the fast interlock is 15us but also pure hardware
 - my answer is yes!

Space requirement for 1 cryo-module ¹/₂ 45U rack at human height

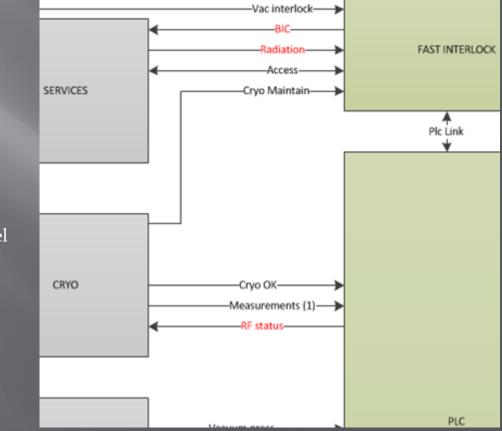
- 3U for fast interlock
- 18U for PLC

Local control screen
SPS Damper example >>>

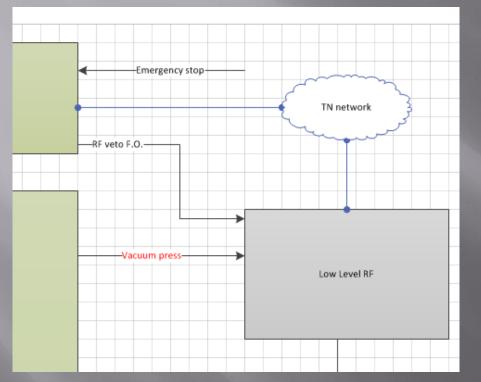
REMOTE CTRL General Fau	lts Reset	DETAILS
LEVEL 1 (a/b)	LEVEL 2	LEVEL 3
Ready Mains presence TA Water Flow TA Water Overtemp Level1 a Ready TA Air TA Filament Filament Delay = 60 [Sec] TA Ready UG1a Ready UG1b Ready Level1 b	Ready UA Ready UA ON UA Min Detection Ug2 ON PIM Overload	Ready DA a DC ON DA b DC ON DA a Mode OK DA a RF ON DA b Mode OK DA b RF ON
Ug1 a Ug1 b 94.7 107.3 V [V] 26.7 27.7 I [mA] 95.0 105.0 V Set [V]	UA Ug2 4.3 V [kV] 996.9 V [V] 3.0 I1 [A] 25.6 I [mA] 2.9 I2 [A] 1000.0 V Set [V]	RF ON

Interfaces External Services

External service interface based on LHC model


Signals to RF: Access Radiation

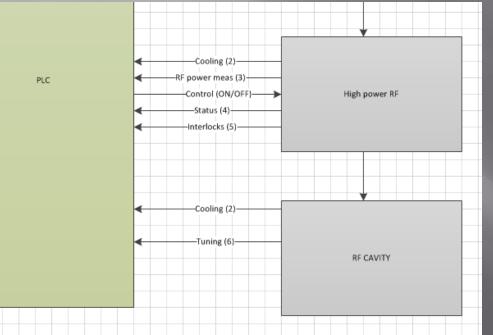
Signals RF to .. : Access BIC


CRYO interface based on the LHC ACS model

Signals Cryo to RF: Cryo_OK Cryo_Maintain Level and pressure acquisition

> Signals RF to Cryo : RF_ON status Warm_up command Cool_DN command

Interfaces LLRF



Standard fast interlock to Switch and protect LLRF module fiber optic link

One per cavity with common interlocks (cryo, access, vac...) Correct ?

Vacuum pressure acquisition for conditioning Needed ?

Interfaces RF power & Cavity

Any movable coupler ?

DC coupler polarization controllable ?

HOM power interlock ?

Standard fast interlock to Switch and protect LLRF module fiber optic link One per cavity with common interlocks (cryo, access, vac...) Correct ?

Vacuum pressure acquisition for conditioning Needed ?

Cavity cooling system air/water temp/flow Any ?

Tuning motor control standard stepper one per cavity Any Piezo tuner needed ?

Planning

BB3 RF power amplifier test local partial control for one RF amplifier system in 2015

SM18 validation full control system for 2 cavity in cryo-module in first ½ 2016

SPS installation and test

a second full control system operational for 2 cavity in cryo-module ready for installation in LS2