First oscillation results from NO ν A

Physics In Collision – University of Warwick September 18, 2015

> Christopher Backhouse Caltech

for the NOvA Collaboration

 $u_{\mu}
ightarrow
u_{
m e}$

• Measure θ_{13} via ν_e appearance

 $u_{\mu}
ightarrow
u_{\mathsf{e}}$

• Measure θ_{13} via ν_e appearance

 $u_\mu
ightarrow
u_\mu$

- Precision measurements of $|\Delta m^2_{\rm atm}|$ and θ_{23}
- Could exclude maximal mixing

 $u_{\mu}
ightarrow
u_{\mathsf{e}}$

- Measure θ_{13} via ν_e appearance
- Determine the θ_{23} octant

 $u_\mu
ightarrow
u_\mu$

- Precision measurements of $|\Delta m^2_{\rm atm}|$ and θ_{23}
- Could exclude maximal mixing

 $u_{\mu}
ightarrow
u_{e}$ and $ar{
u}_{\mu}
ightarrow ar{
u}_{e}$

- Measure θ_{13} via ν_e appearance
- Determine the θ_{23} octant

 $u_{\mu}
ightarrow
u_{\mu}$ and $ar{
u}_{\mu}
ightarrow ar{
u}_{\mu}$

- Precision measurements of $|\Delta m^2_{\rm atm}|$ and θ_{23}
- Could exclude maximal mixing

 $u_{\mu} \rightarrow \nu_{e} \text{ and } \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$

- Measure θ_{13} via ν_e appearance
- Determine the θ_{23} octant
- Determine the mass hierarchy
- Search for $\delta_{CP} \neq 0$

 $u_{\mu}
ightarrow
u_{\mu}$ and $ar{
u}_{\mu}
ightarrow ar{
u}_{\mu}$

- Precision measurements of $|\Delta m^2_{\rm atm}|$ and θ_{23}
- Could exclude maximal mixing

 $u_{\mu} \rightarrow \nu_{e} \text{ and } \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$

- Measure θ_{13} via ν_e appearance
- Determine the θ_{23} octant
- Determine the mass hierarchy
- Search for $\delta_{CP} \neq 0$

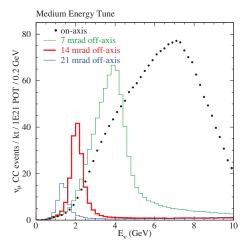
 $u_{\mu}
ightarrow
u_{\mu}$ and $ar{
u}_{\mu}
ightarrow ar{
u}_{\mu}$

- Precision measurements of $|\Delta m_{\rm atm}^2|$ and θ_{23}
- Could exclude maximal mixing

And...

- Cross-sections from the ND
- Steriles, supernovae, exotica

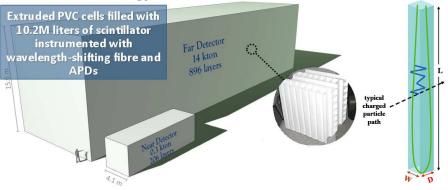
The NO ν A collaboration


40 institutions, 7 countries, over 200 collaborators

Argonne, Athens, Banaras Hindu, Caltech, CUSAT, Czech Academy of Sciences, Charles, Cincinnati, Colorado State, Czech Technical University, Delhi, Dubna, Fermilab, Goias, IIT-Guwahati, Harvard, IIT-Hyderabad, Hyderabad, Indiana, Iowa State, Jammu, Lebedev Physical Institute, UCL, Michigan State, Minnesota-Twin Cities, Minnesota-Duluth, INR Moscow, Panjab, SDMT, South Carolina, SMU, Stanford, Sussex, Tennessee, Texas-Austin, Tufts, Virginia, Wichita State, William and Mary, Winona State.

C. Backhouse (Caltech)

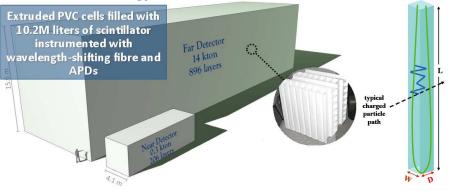
Accelerator and NuMI upgrades


- ▶ 14mrad off-axis location gives sharply-peaked 2GeV ν_{μ} beam with ~ 1% ν_{e} contamination
- NuMI beam routinely operated at 400kW with 85% uptime.
- Peak intensity 520kW
- Using data from Feb 16 2014 to May 15 2015 with detector still under construction
- Total of 3.45 × 10²⁰ POT
- Equivalent of 2.74 × 10²⁰ POT with full 14kt detector

14mrad off-axis beam peaks sharply at 2GeV

Detector technology

To 1 APD pixel



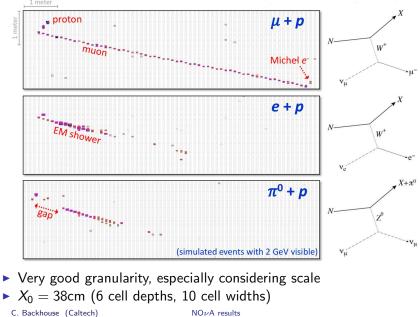
- ► Fine-grained low-Z, highly active, tracking calorimeter
- ▶ 64% liquid scintillator by mass
- ▶ WLS fibres looped in 4x6cm cells of PVC extrusion
- Each to one of 32 pixels of Hamamatsu APD
- ► ~85% quantum eff. Gain ~100×. Cooled to −15°C C. Backhouse (Caltech) NOvA results

Detector technology

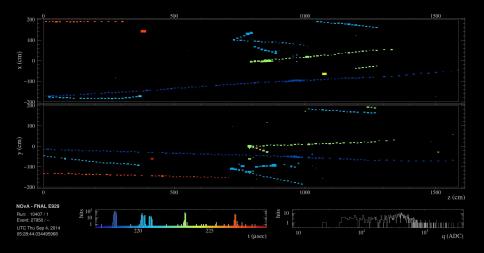
To 1 APD pixel

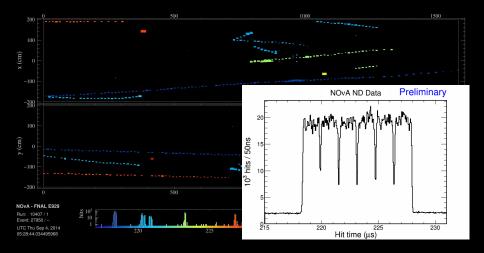
Far Detector

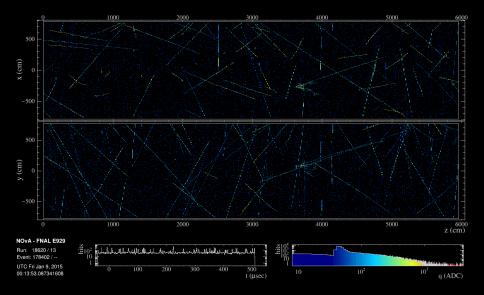
- 14 kton
- 344,000 channels
- On the surface

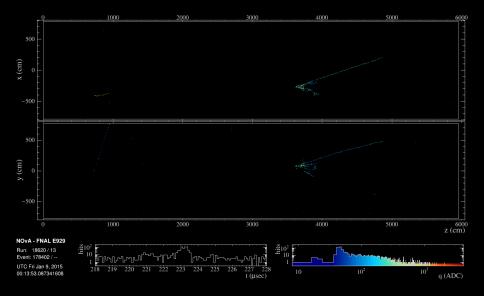

C. Backhouse (Caltech)

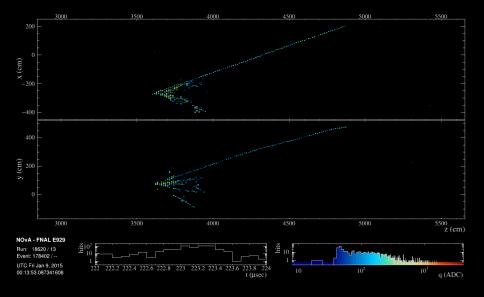
Near Detector


- 0.3 kton
- ▶ 18,000 channels

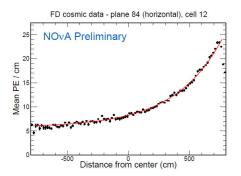

Event topologies


ND neutrinos

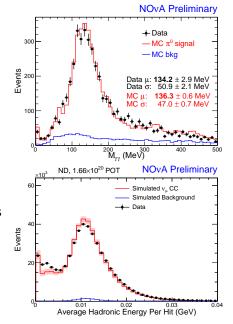

ND neutrinos


FD neutrino search

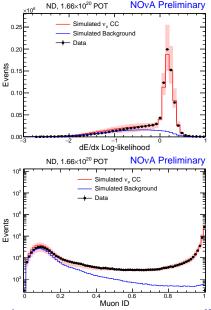
FD neutrino search


FD neutrino search

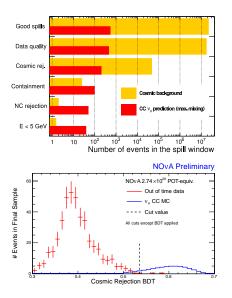
C. Backhouse (Caltech


Calibration and energy scale

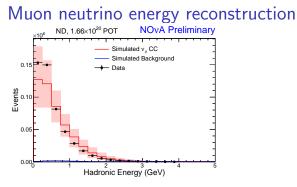
- Channel-to-channel and attenuation calibration with cosmic muons
- Absolute energy scale uses stopping muons as a standard candle
- Multiple calibration cross-checks
 - Cosmic muon dE/dx
 - Beam muon dE/dx
 - Michel energy spectrum
 - π^0 mass peak
 - Hadronic energy/hit


Calibration and energy scale

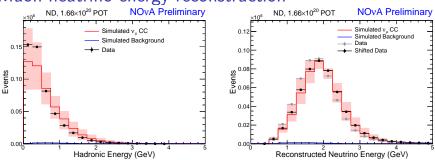
- Channel-to-channel and attenuation calibration with cosmic muons
- Absolute energy scale uses stopping muons as a standard candle
- Multiple calibration cross-checks
 - Cosmic muon dE/dx
 - Beam muon dE/dx
 - Michel energy spectrum
 - π^0 mass peak
 - Hadronic energy/hit


Selecting muon neutrinos

- Basic containment cuts requiring no activity close to detector walls
- kNN-based ν_μ classifier using 4 inputs
 - Track length
 - ► dE/dx
 - Scattering
 - Fraction of planes that have track-only
- Selection 70% efficient for ν_μ signal, 2% for NC background

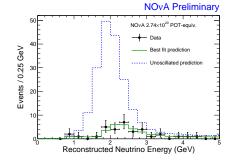


C. Backhouse (Caltech)


Cosmic rejection for u_{μ} analysis

- Cosmic background rate measured from data adjacent in time to the beam spill window
- ▶ 10 μ s spill window at ~ 1Hz gives 10⁵ rejection
- Additional factor 10⁷ from event topology plus boosted decision tree based on
 - Track direction
 - Track start and end points
 - Track length
 - Energy
 - Number of hits

- Good data/MC agreement for muon neutrino selected events
- ▶ But, 21% more energy in MC hadronic system compared to data
- Recalibrate to make neutrino energy peak match
- \blacktriangleright Take the entire shift as a systematic \rightarrow 6% neutrino energy scale uncertainty

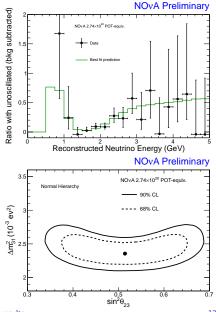


Muon neutrino energy reconstruction


- Good data/MC agreement for muon neutrino selected events
- ▶ But, 21% more energy in MC hadronic system compared to data
- Recalibrate to make neutrino energy peak match
- \blacktriangleright Take the entire shift as a systematic \rightarrow 6% neutrino energy scale uncertainty
- Use ND data to predict FD neutrino spectrum

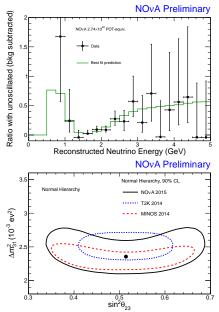
C. Backhouse (Caltech)

- Expect 201 events w/o oscillations
- ▶ We observe 33 events



- Expect 201 events w/o oscillations
- We observe 33 events
- Oscillation fit matches spectrum well

- Expect 201 events w/o oscillations
- We observe 33 events
- Oscillation fit matches spectrum well


•
$$\Delta m_{32}^2 = +2.37^{+0.16}_{-0.15}$$
 or
 $-2.40^{+0.14}_{-0.17}$
• $\sin^2 \theta_{23} = 0.51 \pm 0.10$

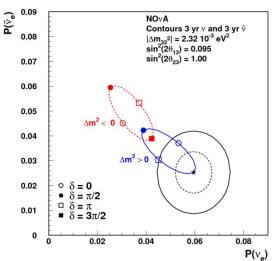
- Expect 201 events w/o oscillations
- We observe 33 events
- Oscillation fit matches spectrum well

•
$$\Delta m_{32}^2 = +2.37^{+0.16}_{-0.15}$$
 or
 $-2.40^{+0.14}_{-0.17}$
• $\sin^2 \theta_{23} = 0.51 \pm 0.10$

 Very competitive with ~ 8% of nominal exposure

C. Backhouse (Caltech)

Principle of the ν_e measurement

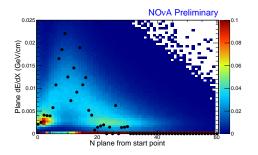

- ► To first order, NO ν A measures $P(\nu_{\mu} \rightarrow \nu_{e})$ and $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$ evaluated at 2GeV
- These depend differently on sign(Δm²) and δ_{CP}

0.09 $P(\bar{v}_e)$ NOVA $|\Delta m_{32}^2| = 2.32 \ 10^{-3} \ eV^2$ 0.08 $\sin^2(2\theta_{13}) = 0.095$ $\sin^2(2\theta_{23}) = 1.00$ 0.07 0.06 0.05 $\Delta m^2 <$ 0.04 $\Delta m^2 > 0$ 0.03 $\delta = 0$ 0.02 0 $= \pi/2$ $\Box \delta = \pi$ 0.01 • $\delta = 3\pi/2$ 0 0.02 0.04 0.06 0.08 0 P(v_)

$P(\bar{v}_e)$ vs. $P(v_e)$ for sin²(2 θ_{23}) = 1

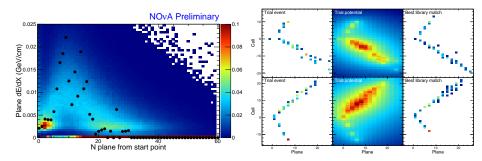
Principle of the ν_e measurement

- ► To first order, NO ν A measures $P(\nu_{\mu} \rightarrow \nu_{e})$ and $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$ evaluated at 2GeV
- These depend differently on sign(Δm²) and δ_{CP}
- Ultimately constrain to some region of this space


1 and 2 o Contours for Starred Point

 \blacktriangleright Two ν_e classifiers developed based on very different techniques

 LID Uses PDFs of leading shower longitudinal and transverse profiles

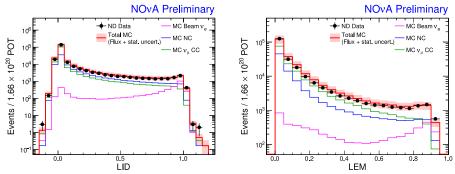

 LEM Finds best matches in a Monte Carlo library based on entire event topology

> Two ν_e classifiers developed based on very different techniques

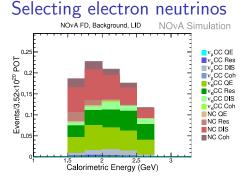


 LEM Finds best matches in a Monte Carlo library based on entire event topology

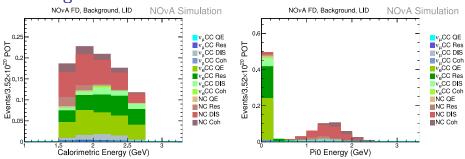
> Two ν_e classifiers developed based on very different techniques



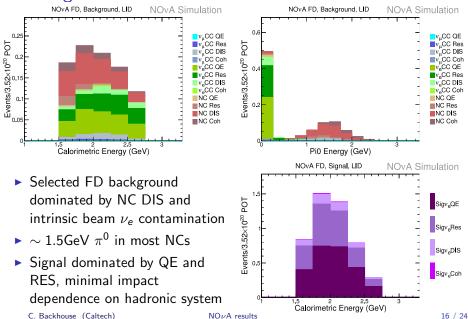
> Two ν_e classifiers developed based on very different techniques


- Good separation of signal from background, including cosmic backgrounds
- Identical performance. 35% signal efficiency, 0.7% NC events remain.
 62% expected overlap between samples

> Two ν_e classifiers developed based on very different techniques

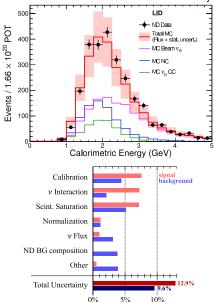


- Good separation of signal from background, including cosmic backgrounds
- Identical performance. 35% signal efficiency, 0.7% NC events remain.
 62% expected overlap between samples
- Before unblinding FD data, decided to show both results and use LID as the primary selector


C. Backhouse (Caltech)

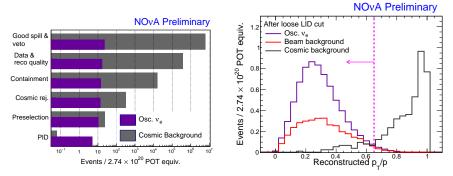
 Selected FD background dominated by NC DIS and intrinsic beam v_e contamination

- Selected FD background dominated by NC DIS and intrinsic beam v_e contamination
- $\sim 1.5 {
 m GeV} \ \pi^0$ in most NCs



Selecting electron neutrinos

NOvA Preliminary


FD prediction

- Good data/MC agreement for ND energy spectrum
- Extrapolate 5% ND data background excess bin-by-bin to FD using Far/Near ratio
- FD signal expectation uses the same procedure and ND ν_μ spectrum as the disappearance analysis
- Most systematics assessed by modifying the Near and Far MC and calculating the variation in the prediction

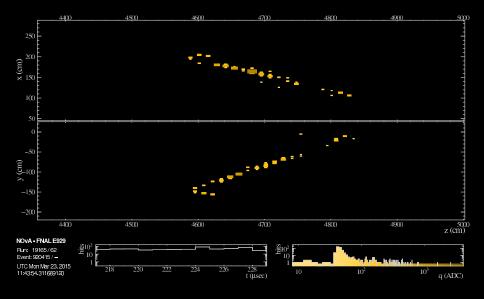
C. Backhouse (Caltech)

Cosmic rejection for ν_e analysis

- Containment and topological cuts (e.g. p_T/p)
- Classifiers themselves provide remaining rejection
- Achieve 10⁸ removal of cosmic rays
- Measure rate using out-of-time spill data as for u_{μ} analysis
- Cosmic background expectation 0.06 events

C. Backhouse (Caltech)

$NO\nu A$ results

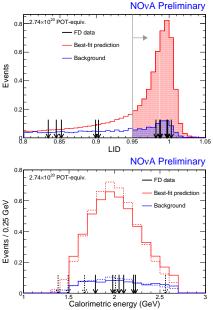

Signal and background predictions

- \blacktriangleright Background prediction for both selectors is ~ 1 event $\pm 10\%$ (syst)
- Few percent dependence on oscillation parameters
- Dominated by beam ν_e and NC
- Cosmic background comparable to smallest beam backgrounds

PID	Total bkg	ν_e CC	NC	$ u_{\mu}$ CC	$ u_{ au}$ CC	cosmic
LID	0.94 ± 0.09	0.46	0.35	0.05	0.02	0.06
LEM	1.00 ± 0.11	0.46	0.40	0.06	0.02	0.06

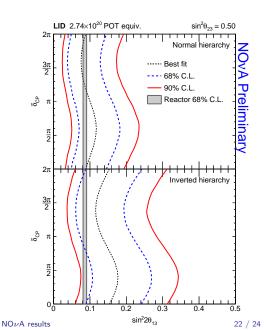
- Range of signal predictions
- NH, $\delta_{CP} = 3\pi/2 \rightarrow 6 \pm 0.7$
- ► IH, $\delta_{CP} = \pi/2 \rightarrow 2 \pm 0.3$ (for LID, LEM similar)

Example selected event



C. Backhouse (Caltech

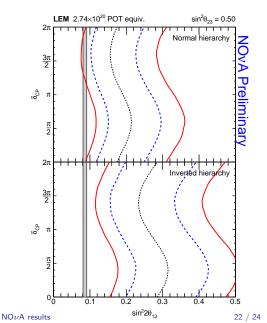
 $NO\nu A$ results


Selected events

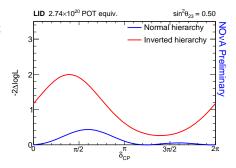
- LID selects 6 events and LEM selects 11
- Significance 3.3σ (LID) or 5.5σ (LEM)
- All 6 LID events are also selected by LEM
- ▶ p-value for 11=6/5/0 is 9.2%
- NB, low-end energy cut trained differently for LID and LEM

LID (N=6)

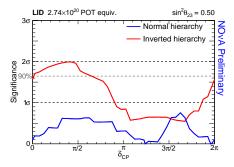
- Compatible with reactor constraints
- Slightly better for NH

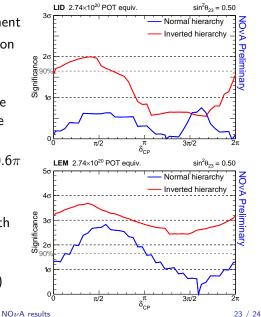


LID (N=6)


- Compatible with reactor constraints
- Slightly better for NH

LEM (N=11)


- \blacktriangleright Curves shifted right $\sim 2\times$
- Increases tension


- ▶ Include reactor θ_{13} measurement
- ► Plot compatibility as a function of hierarchy and δ_{CP}

- Include reactor θ_{13} measurement
- ► Plot compatibility as a function of hierarchy and δ_{CP}
- Deviations from gaussian statistics, discontinuous shape due to discrete set of possible outcomes
- Disfavour IH for 0 < δ_{CP} < 0.6π at 90% with primary selector

- Include reactor θ_{13} measurement
- ► Plot compatibility as a function of hierarchy and δ_{CP}
- Deviations from gaussian statistics, discontinuous shape due to discrete set of possible outcomes
- Disfavour IH for 0 < δ_{CP} < 0.6π at 90% with primary selector
- Both selectors prefer NH, both prefer δ_{CP} near 3π/2
- ► Disfavour IH, $\delta_{CP} = \pi/2$ at 1.6 σ (3.2 σ) using LID (LEM) for all 0.4 < sin² θ_{23} < 0.6

Conclusion

- ► NO*v*A has observed muon neutrino disappearance and electron neutrino appearance
- \blacktriangleright 6.5% measurement of atmospheric mass splitting, θ_{23} consistent with maximal mixing
- ν_e appearance signal at 3.3σ
- Consistent with hints for $\pi < \delta_{CP} < 2\pi$ and NH
- Only \sim 8% of nominal exposure, much more to come
- Stay tuned for next summer!

Find us on twitter/facebook/youtube/instagram

C. Backhouse (Caltech)

 $NO\nu A$ results

Thank you!

Questions?