
First oscillation results from NOνA

Physics In Collision – University of Warwick
September 18, 2015

Christopher Backhouse
Caltech

for the NOνA Collaboration

C. Backhouse (Caltech) NOνA results 1 / 24



NOνA physics goals
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νµ → νe and ν̄µ → ν̄e

◮ Measure θ13 via νe appearance

◮ Determine the θ23 octant

◮ Determine the mass hierarchy

◮ Search for δCP 6= 0

νµ → νµ and ν̄µ → ν̄µ

◮ Precision measurements of
|∆m2

atm| and θ23
◮ Could exclude maximal mixing

And...

◮ Cross-sections from the ND

◮ Steriles, supernovae, exotica

C. Backhouse (Caltech) NOνA results 2 / 24



The NOνA collaboration

40 institutions, 7 countries, over 200 collaborators

Argonne, Athens, Banaras Hindu, Caltech, CUSAT, Czech Academy of Sciences, Charles, Cincinnati, Colorado State, Czech

Technical University, Delhi, Dubna, Fermilab, Goias, IIT-Guwahati, Harvard, IIT-Hyderabad, Hyderabad, Indiana, Iowa State,

Jammu, Lebedev Physical Institute, UCL, Michigan State, Minnesota-Twin Cities, Minnesota-Duluth, INR Moscow, Panjab,

SDMT, South Carolina, SMU, Stanford, Sussex, Tennessee, Texas-Austin, Tufts, Virginia, Wichita State, William and Mary,

Winona State.
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Accelerator and NuMI upgrades

◮ 14mrad off-axis location gives
sharply-peaked 2GeV νµ beam
with ∼ 1% νe contamination

◮ NuMI beam routinely operated
at 400kW with 85% uptime.

◮ Peak intensity 520kW

◮ Using data from Feb 16 2014 to
May 15 2015 with detector still
under construction

◮ Total of 3.45 × 1020 POT

◮ Equivalent of 2.74 × 1020 POT
with full 14kt detector
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Detector technology

◮ Fine-grained low-Z, highly active, tracking calorimeter

◮ 64% liquid scintillator by mass

◮ WLS fibres looped in 4x6cm cells of PVC extrusion

◮ Each to one of 32 pixels of Hamamatsu APD

◮ ∼85% quantum eff. Gain ∼100×. Cooled to −15◦C
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Detector technology

Far Detector

◮ 14 kton

◮ 344,000 channels

◮ On the surface

Near Detector

◮ 0.3 kton

◮ 18,000 channels
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Event topologies

◮ Very good granularity, especially considering scale
◮ X0 = 38cm (6 cell depths, 10 cell widths)
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ND neutrinos
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ND neutrinos
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FD neutrino search
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FD neutrino search
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Calibration and energy scale

◮ Channel-to-channel and
attenuation calibration with
cosmic muons

◮ Absolute energy scale uses
stopping muons as a standard
candle

◮ Multiple calibration cross-checks

◮ Cosmic muon dE/dx
◮ Beam muon dE/dx
◮ Michel energy spectrum
◮ π0 mass peak
◮ Hadronic energy/hit
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Selecting muon neutrinos

◮ Basic containment cuts
requiring no activity close to
detector walls

◮ kNN-based νµ classifier using 4
inputs

◮ Track length
◮ dE/dx
◮ Scattering
◮ Fraction of planes that have

track-only

◮ Selection 70% efficient for νµ
signal, 2% for NC background
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Cosmic rejection for νµ analysis

Cosmic Rejection BDT
0.3 0.4 0.5 0.6 0.7

# 
E

ve
nt

s 
in

 F
in

al
 S

am
pl

e

0

20

40

60  POT-equiv.2010×A 2.74νNO

Out of time data

 CC MCµν

Cut value

A PreliminaryνNO

All cuts except BDT applied

◮ Cosmic background rate
measured from data adjacent in
time to the beam spill window

◮ 10µs spill window at ∼ 1Hz
gives 105 rejection

◮ Additional factor 107 from event
topology plus boosted decision
tree based on

◮ Track direction
◮ Track start and end points
◮ Track length
◮ Energy
◮ Number of hits
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Muon neutrino energy reconstruction

Hadronic Energy (GeV)
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◮ Good data/MC agreement for muon neutrino selected events

◮ But, 21% more energy in MC hadronic system compared to data

◮ Recalibrate to make neutrino energy peak match

◮ Take the entire shift as a systematic → 6% neutrino energy scale
uncertainty
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◮ Good data/MC agreement for muon neutrino selected events

◮ But, 21% more energy in MC hadronic system compared to data

◮ Recalibrate to make neutrino energy peak match

◮ Take the entire shift as a systematic → 6% neutrino energy scale
uncertainty

◮ Use ND data to predict FD neutrino spectrum
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νµ disappearance results

◮ Expect 201 events w/o
oscillations

◮ We observe 33 events
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νµ disappearance results
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νµ disappearance results

◮ Expect 201 events w/o
oscillations

◮ We observe 33 events
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νµ disappearance results

◮ Expect 201 events w/o
oscillations

◮ We observe 33 events

◮ Oscillation fit matches spectrum
well

◮ ∆m2
32 = +2.37+0.16

−0.15 or

− 2.40+0.14
−0.17

◮ sin2 θ23 = 0.51 ± 0.10

◮ Very competitive with ∼ 8% of
nominal exposure
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Principle of the νe measurement

◮ To first order, NOνA
measures P(νµ → νe)
and P(ν̄µ → ν̄e)
evaluated at 2GeV

◮ These depend differently
on sign(∆m2) and δCP
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Principle of the νe measurement

◮ To first order, NOνA
measures P(νµ → νe)
and P(ν̄µ → ν̄e)
evaluated at 2GeV

◮ These depend differently
on sign(∆m2) and δCP

◮ Ultimately constrain to
some region of this space
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Selecting electron neutrinos

◮ Two νe classifiers developed based on very different techniques

◮ LID Uses PDFs of leading
shower longitudinal and
transverse profiles

◮ LEM Finds best matches in a
Monte Carlo library based on
entire event topology
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Selecting electron neutrinos
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Selecting electron neutrinos

◮ Two νe classifiers developed based on very different techniques

◮ Good separation of signal from background, including cosmic
backgrounds

◮ Identical performance. 35% signal efficiency, 0.7% NC events remain.
62% expected overlap between samples
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Selecting electron neutrinos

◮ Two νe classifiers developed based on very different techniques

◮ Good separation of signal from background, including cosmic
backgrounds

◮ Identical performance. 35% signal efficiency, 0.7% NC events remain.
62% expected overlap between samples

◮ Before unblinding FD data, decided to show both results and

use LID as the primary selector
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Selecting electron neutrinos

◮ Selected FD background
dominated by NC DIS and
intrinsic beam νe contamination
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Selecting electron neutrinos

◮ Selected FD background
dominated by NC DIS and
intrinsic beam νe contamination

◮ ∼ 1.5GeV π0 in most NCs

◮ Signal dominated by QE and
RES, minimal impact
dependence on hadronic system
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FD prediction

◮ Good data/MC agreement for
ND energy spectrum

◮ Extrapolate 5% ND data
background excess bin-by-bin to
FD using Far/Near ratio

◮ FD signal expectation uses the
same procedure and ND νµ
spectrum as the disappearance
analysis

◮ Most systematics assessed by
modifying the Near and Far MC
and calculating the variation in
the prediction
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Cosmic rejection for νe analysis
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◮ Containment and topological cuts (e.g. pT/p)

◮ Classifiers themselves provide remaining rejection

◮ Achieve 108 removal of cosmic rays

◮ Measure rate using out-of-time spill data as for νµ analysis

◮ Cosmic background expectation 0.06 events
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Signal and background predictions

◮ Background prediction for both selectors is ∼ 1 event ±10% (syst)

◮ Few percent dependence on oscillation parameters

◮ Dominated by beam νe and NC

◮ Cosmic background comparable to smallest beam backgrounds

PID Total bkg νe CC NC νµ CC ντ CC cosmic

LID 0.94± 0.09 0.46 0.35 0.05 0.02 0.06
LEM 1.00± 0.11 0.46 0.40 0.06 0.02 0.06

◮ Range of signal predictions

◮ NH, δCP = 3π/2 → 6± 0.7

◮ IH, δCP = π/2 → 2± 0.3

(for LID, LEM similar)
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Example selected event

C. Backhouse (Caltech) NOνA results 20 / 24



Selected events

◮ LID selects 6 events and LEM
selects 11

◮ Significance 3.3σ (LID) or 5.5σ
(LEM)

◮ All 6 LID events are also
selected by LEM

◮ p-value for 11=6/5/0 is 9.2%

◮ NB, low-end energy cut trained
differently for LID and LEM
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0.8 0.85 0.9 0.95 1 1.05

E
ve

nt
s

0

0.2

0.4

0.6

0.8  POT-equiv.2010×2.74

A PreliminaryνNO

FD data

Best-fit prediction

Background

Calorimetric energy (GeV)
1 1.5 2 2.5 3

E
ve

nt
s 

/ 0
.2

5 
G

eV

0

0.2

0.4

0.6

0.8
 POT-equiv.2010×2.74

A PreliminaryνNO

FD data

Best-fit prediction

Background

C. Backhouse (Caltech) NOνA results 21 / 24



νe appearance results

LID (N=6)

◮ Compatible with reactor
constraints

◮ Slightly better for NH
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νe appearance results

LID (N=6)

◮ Compatible with reactor
constraints

◮ Slightly better for NH

LEM (N=11)

◮ Curves shifted right ∼ 2×

◮ Increases tension
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νe appearance results

◮ Include reactor θ13 measurement

◮ Plot compatibility as a function
of hierarchy and δCP
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νe appearance results

◮ Include reactor θ13 measurement

◮ Plot compatibility as a function
of hierarchy and δCP

◮ Deviations from gaussian
statistics, discontinuous shape
due to discrete set of possible
outcomes

◮ Disfavour IH for 0 < δCP < 0.6π
at 90% with primary selector
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νe appearance results

◮ Include reactor θ13 measurement

◮ Plot compatibility as a function
of hierarchy and δCP

◮ Deviations from gaussian
statistics, discontinuous shape
due to discrete set of possible
outcomes

◮ Disfavour IH for 0 < δCP < 0.6π
at 90% with primary selector

◮ Both selectors prefer NH, both
prefer δCP near 3π/2

◮ Disfavour IH, δCP = π/2 at
1.6σ (3.2σ) using LID (LEM)
for all 0.4 < sin2 θ23 < 0.6
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Conclusion

◮ NOνA has observed muon neutrino disappearance and electron
neutrino appearance

◮ 6.5% measurement of atmospheric mass splitting, θ23 consistent with
maximal mixing

◮ νe appearance signal at 3.3σ

◮ Consistent with hints for π < δCP < 2π and NH

◮ Only ∼ 8% of nominal exposure, much more to come

◮ Stay tuned for next summer!

Find us on twitter/facebook/youtube/instagram
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Thank you!
Questions?
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