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QCD is a key part of the Standard Model but quark 
confinement is a complication/interesting feature.

CDF
Cross-sections calculated at 
high energy using QCD pert. th. 
with ~3% errors. Also parton 
distribution function and 
hadronisation uncertainties.

But (some) properties of hadrons 
much more accurately known 
and calculable in lattice QCD -  
can test SM and determine 
parameters very accurately (1%).
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Weak decays probe meson structure and quark couplings

Need precision lattice QCD to get accurate CKM 
elements to test Standard Model (e.g. is CKM unitary?). 

Vus

K
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Expt = CKM x theory(QCD)

If  Vab known, compare lattice to expt to test QCD
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Nuclear physics

Particle physics

Astrophysics

Applications of Lattice QCD/Lattice field theory

Hadron spectrum Hadron structure

QCD parameters

CKM elements
QCD at high temperatures 
and densitiesTheories beyond the  

Standard Model

Quantum gravity

Nuclear masses 
and properties

Glueballs and exotica

Annual proceedings:!
http://pos.sissa.it/

LAT2015 talks: !
http://indico2.riken.jp/indico/
conferenceDisplay.py?confId=1805!

http://pos.sissa.it


Lattice QCD =  fully nonperturbative, 
based on Path Integral formalism

• Generate sets of gluon fields for 
Monte Carlo integrn of Path Integral 
(inc effect of u, d, s (+ c) sea quarks)
• Calculate averaged “hadron 
correlators” from valence q props. 

• Determine      and fix       to get 
results in physical units.

a mq

• Fit as a function of time to obtain 
masses and simple matrix elements

a
• extrapolate to                               
for real world

a = 0, mu,d = phys

Z
DUD�D� exp(�

Z
LQCDd4x)basic 

integral

*now* able to  
calculate directly



Hadron correlation functions (‘2point functions’) give 
masses and decay constants. 

h0|H†(T )H(0)|0i =
X

n

Ane
�mnT

masses of all 
hadrons with 
quantum 
numbers of H|h0|H|ni|2

2mn

decay constant parameterises amplitude to annihilate - a 
property of the meson calculable in QCD. Relate to 
experimental decay rate. 1% accurate experimental info. 

for f  and m for many mesons! 
Need accurate determination 
from lattice QCD to match

QCD HH

=
f2
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Example (state-of-the-art) calculation 

R. Dowdall et al, HPQCD, 1303.1670.

Extract meson mass and 
amplitude=decay constant 
from correlator for multiple 
lattice spacings and mu/d. 
Very high statistics

Convert decay constant 
to GeV units using       to 
fix relative lattice 
spacing. Very small 
discretisation errors. 

 0.01

 0.1

 0  20  40  60  80  100

co
rr

el
at

or
(T

)

T 

pion at physical mu/d

= ml/ms

Extrapolation in a

w0



The gold-plated meson mass spectrum 
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few MeV uncertainties in many cases
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More detailed study of  unstable and excited states 
important to pin down oddities now being seen (e.g. in 
charmonium spectrum)
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Y(4260) 

Kc J/\ χc0 χc1 χc2 hc 

X(3872) 

JPC 

Excited charmonia 

MS | 400 MeV [HadSpec, JHEP 07 (2012) 126] 

Hadspec

Experiment

‘Exotic’

Key future aim: establish whether tetra/pentaquark states, hybrids, 
glueballs exist - needs very high stats and large basis of operators.
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MU = 854.1 ± 1.1 MeV   
* = 12.4 ± 0.6 MeV 
g = 5.80 ± 0.11 

[MS | 400 MeV] 

[PR D87, 034505] The U resonance in SS scattering 

c.f. experimentally  
MU = 775.49 ± 0.34 MeV 
* = 149.1 ± 0.8 MeV 
g  ≈  5.9 

Mρ 

�* 

unstable  
states need 
multivolume 
analysis

1204.5425

1411.2004
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Experiment : weak decays
: em decays

Lattice QCD : predictions
: postdictions

The spectrum of decay constants for 
gold-plated mesons

HPQCD, arXiv:1302.2644, 1408.5768, 1503.05762

key input for SM calcn of 
B(s) ! µ+µ�
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FIG. 7. Recent lattice QCD determinations of the QCD coupling
(nf = 5) evaluated at scale MZ . The gray band is the weighted
average of the results: 0.1185(4). We include our jj result for nf =
3 in the average, but not our new nf = 4 result since systematic
errors are correlated between the two results. The results shown here
come from this paper and [37–41].

In this paper, we have redone our earlier nf = 3 analysis [2]
using simulations with nf = 4 sea quarks: u, d, s and c. Our
new results,

mc(3 GeV, nf = 4) = 0.9851(63) GeV (52)
↵
MS

(MZ , nf = 5) = 0.11822(74), (53)

agree well with our earlier results of 0.986(6) GeV and
0.1183(7), suggesting that contributions from c quarks in
the sea are reliably estimated using perturbation theory (as
expected). Our c mass is about 1.8� lower than the re-
cent result from the ETMC collaboration, also using nf =

4 simulations but with a different method [36]: they get
mc(mc) = 1.348(42) GeV, compared with our nf = 4 re-
sult of 1.2715(95) GeV.

Our new result for the coupling (Eq. (53)) agrees with re-
sults from other collaborations, who use different methods
from us (and each other). Recent results (nf = 3 or 4) are
summarized in Fig. 7.

We updated our earlier nf = 3 analysis [32] of the ra-
tio mc/ms of quark masses using our nf = 4 data. This
is a relatively simple analysis of data from Table II. Our new
value is:

mc(µ, nf )

ms(µ, nf )

= 11.652(65). (54)

It agrees well with our previous result 11.85(16), but is much
more accurate. We compare our new result with others in
Fig. 8.

We obtain a new estimate for the s mass by combining our
new result for mc/ms with our new estimate of the c mass
(Eq. (52), converted from nf = 4):

ms(µ, nf = 3) =

(
93.6(8) MeV µ = 2GeV

84.7(7) MeV µ = 3GeV.
(55)

FIG. 8. Lattice QCD determinations of the ratio of the c and s quarks’
masses. The ratios come from this paper and references [32, 33, 36,
42, 43]. The gray band is the weighted average of the three nf = 4
results: 11.700(46).

FIG. 9. Lattice QCD determinations of the MS s-quark mass
ms(3GeV, nf = 3) in MeV. These masses come this paper and
references [32, 36, 44–46] The gray band is the weighted average of
these results: 84.1(5)MeV.

This brings the error below 1% for the first time. Values for
ms(µ, nf = 4) are smaller by about 0.2 MeV. Our new result
agrees with our previous analysis and also with other recent
nf = 3 or 4 analyses:

ms(2 GeV) =

8
><

>:

92.4(1.5) MeV HPQCD [32],
99.6(4.3) MeV ETMC [36],
95.5(1.9) MeV Durr et al [44],

ms(3 GeV) = 81.64(1.17) MeV RBC/UKQCD [45].
(56)

We compare these nonperturbative results in Fig. 9, together
with an earlier perturbative determination from [46].

Finally, we have also updated our previous (nf = 3) non-
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We compare these nonperturbative results in Fig. 9, together
with an earlier perturbative determination from [46].

Finally, we have also updated our previous (nf = 3) non-

Quark masses and strong coupling constant  
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HPQCD HISQ ratio n f = 4

ETMC ratio
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FIG. 7: Lattice QCD results for m
b

in the MS scheme with
5 flavours and evaluated at its own scale. Results are from
calculations that include either 3 or 4 flavours of sea quarks
and so can be perturbatively corrected to 5 flavours. All 5
results use di↵erent methods, indicated on the right. The
top result is from this paper, the second from [15], the third
from [64], the fourth from [18] and the fifth from [65], adjusted
perturbatively to n

f

= 5. The grey band gives the weighted
average of the lattice results: 4.178(14) GeV.

suggested in [20] as being needed for a future accurate
determination of Higgs couplings to bb. The value also
agrees well with determinations from continuum meth-
ods, for example using Re+e� results in the b region [49].

The method we have given here is applicable to other
lattice formalisms for heavy quarks, for example that of
the Fermilab Lattice Collaboration [67]. Further deter-
minations of mb from other formalisms would be useful in
the long-term goal of reducing uncertainties in Standard
Model parameters needed for precision characterisation
of the Higgs boson.
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Appendix A: Determination of Z
V

The perturbative analysis of heavy-heavy current-
current correlators is well developed in continuum QCD
perturbation theory [39–43] and here we make use of that
to normalise the lattice NRQCD vector current for bb an-

nihilation that we use to determine the ⌥ leptonic width.
The method is a variation of that used for the J/ lep-
tonic width in [8]. In that case we were working with
a relativistic discretisation of the QCD quark action on
the lattice. Since here we have a nonrelativistic discreti-
sation there are some di↵erences in the approach that we
lay out in this section5.

Time-moments of current-current correlators, being
ultraviolet-finite quantities, can be calculated in lattice
QCD and extrapolated to the continuum limit to give a
continuum result that can be compared to experiment [8].
The current used in the correlator must be matched to
the continuum current, however. When the Highly Im-
proved Staggered Quark discretisation [22] is used, for
example, the local pseudoscalar density is absolutely nor-
malised [14, 15] but the vector current normalisation has
to be fixed. For heavy quarks this can be done using
the continuum QCD perturbation theory for the vec-
tor current-current correlator moments. The multiplica-
tive renormalisation factor ZV is simply determined by
matching the lattice result at a given lattice spacing for
a specific moment to the perturbative result. We can
choose which moment to use, since di↵erences in ZV that
arise from a di↵erent choice are discretisation e↵ects that
must disappear in the continuum limit, along with other
discretisation errors that result from working at a non-
zero lattice spacing. The low moments, 4–10, are known
through O(↵3

s) so are clearly to be preferred over higher
ones. It is convenient to use ratios of vector to pseu-
doscalar current-current correlator moments since then
factors of the quark mass cancel [8].

When a nonrelativistic discretisation of the QCD quark
action is used, neither the pseudoscalar nor the vector
currents is absolutely normalised and the lattice current
is only determined to a given order in a relativistic expan-
sion. Hence the match to continuum QCD perturbation
theory has both discretisation errors and relativistic er-
rors, which are mixed by the higher dimension operators
used to implement corrections, and so we cannot simply
take a value of Z from the match for a specific moment.

In determining the normalisation of the current we
can, however, make use of the fact that time-moments
with low moment number emphasise very short times
in the current-current correlator and are therefore sen-
sitive to much higher internal spatial momenta within
the quark-antiquark pair (the overall momentum of the
pair is zero) than higher moments are [15]. Thus, as the
moment number changes, the sensitivity to relativistic
corrections changes. This is easily seen in an analysis of
the free case. At leading relativistic order, for vector or
pseudoscalar moments, multiplying the free quark and

5 Note also that, in a nonrelativistic formalism, the annihilation
and scattering currents do not have the same renormalisation
factor

1408.5768

1302.3739

1408.4169

Lattice QCD results have 
transformed accuracy 
possible.

1408.4169

1408.4169

Future: Accurate tests of Higgs 
require halving uncertainty on mb 
and            …..↵s

! bb



mc/ms

Obtained directly from lattice QCD if same quark formalism 
is used for both quarks.  
Ratio is at same     and for same nf.

�
mq1,latt

mq2,latt

⇥

a=0

=
mq1,MS(µ)
mq2,MS(µ)

HPQCD: 1408.4169

Not possible any other way ...

allows 1% accuracy in ms (94.0(6) MeV)

Quark mass ratios

µ
10

the ⇥c and ⇥b and the equation:

mb(µ, nf )
mc(µ, nf )

=
mexp

�b
w(mexp

�b
, 0)

mexp
�c w(mexp

�c , 0)
. (41)

It might seem simpler to fit m0h directly, rather than
the ratio w; but using w significantly reduces the m�h

dependence (and therefore our extrapolation errors), and
also makes our results quite insensitive to uncertainties
in our values for the lattice spacing.

We parameterize function w with an expansion mod-
eled after the one we used to fit the moments:

w(m�h ,a) = Zm(a)

⇧
1 +

Nw↵

n=1

wn

⇤
2�
m�h

⌅n
⌃

/ (42)

⌥

 1 +
Nam↵

i=1

Nw↵

j=0

cij

�am�h

2

⇥2i
⇤

2�
m�h

⌅j
�

⌦ ,

where, as for the moments,

i + j � max(Nam, Nw). (43)

Coe⇤cients cij and wn are determined by fitting function
w(m�h , a) to the values of 2am0h/(am�h) from Table II.
The fit also determines the parameters Zm(a), one for
each lattice spacing, which account for the running of
the bare quark masses between di⇥erent lattice spacings.

The finite-a dependence is smaller here than for the
moments, because the ⇥h is nonrelativistic [8], and the
variation with m�h stronger (twice that of z(µ/mh =
3, m�h)). So here we use priors

cij = 0± 0.05 (44)
wn = 0± 4

Zm(a) = 1± 0.5

with Nw =8. We again take Nam =30, although identical
results are obtained with Nam = 15.

Our fit results are illustrated by Figure 4 which plots
the ratio m0h/m�h divided by m0c/m�c for a range of
⇥h masses. Our data for di⇥erent lattice spacings is com-
pared with our fit, and with the a = 0 limit of our fit
(solid line). The fit is excellent, with ⇤2/22 = 0.42 for
the 22 pieces of data we fit (we again exclude cases with
am�h > 1.95). Using the ⇥c and ⇥b masses from Sec-
tion IVB, and Eq. (41) with the best-fit values for the
parameters, we obtain finally

m0b

m0c
⇥ 4.49(4) as a⇥0 (45)

=
mb(µ, nf )
mc(µ, nf )

,

which agrees well with our result from the moments
(Eq. (36)).

m�c 4 6 8 m�b

m�h (GeV)

0.8
0.9
1.0
1.1
1.2
1.3
1.4

m
0
h
m

�
c
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m
0
c
m

�
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FIG. 4: Ratio m0h/m�h divided by m0c/m�c (which we ap-
proximate by w(m�c , a)/2 from our fit) as a function of m�h .
The solid line shows the a=0 extrapolation obtained from our
fit. This is compared with simulation results for our 4 small-
est lattice spacings, together with the best fits (dashed lines)
corresponding to those lattice spacings. The point marked by
an “x” is for the largest mass we tried (last line in Table II);
this was not included in the fit because am�h is too large.

VI. �MS FROM WILSON LOOPS

In a recent paper [26], we presented a very accurate
determination of the QCD coupling from simulation re-
sults for Wilson loops. Here we want to compare those
results to the value we obtain from heavy-quark corre-
lators. First, however, we must update our earlier anal-
ysis to take account of the new value for r1 [10] given
in Eq. (10) and improved values for r1/a [13] given in Ta-
ble I. (The Wilson-loop paper uses some additional con-
figuration sets: from Table II in that paper, sets 1, 6, 9,
and 11 whose new r1/as are 1.813(8), 2.644(3), 5.281(8)
and 5.283(8), respectively.) We have rerun our earlier
analysis, updating r1, r1/a, and the c and b masses. The
results are shown in Figure 5. Combining results as in the
earlier paper we obtain a final value from the Wilson-loop
quantities of

�MS(MZ , nf = 5) = 0.1184(6), (46)

with ⇤2/22 = 0.3 for the 22 quantities in the figure.
This agrees very well with the result in the earlier pa-
per, �MS(MZ) = 0.1183(8), but has a slightly smaller
error, as expected given the smaller error in r1. This
new value also agrees well with our very di⇥erent de-
termination from heavy-quark correlators (Eq. (38)). A
breakdown of the error into its di⇥erent sources can be
found in Table IV of [26] (reduce the r1 and r1/a errors
in that table by half to account for the improved values
used here).

mb/mc

mb/mc = 4.51(4)

*new* 2+1+1 with 
physical u.d:

mc/ms = 11.652(65)
mb/ms = 52.90(44)

6= 3m⌧/mµ



B semileptonic decays from Lattice QCD

Theoretical Motivation

b u

W

l

⌫

b d(s)

W

Z

l+

l�

d d

B
⇡

B

⇡(K)

Tree-level diagram

Loop-level diagram

t

B-meson semileptonic decays through loop-level diagram
(B ! K (⇡)l+l�, B ! K (⇡)⌫⌫̄)

Standard Model contribution is suppressed in the loop-level diagram.
(Suitable processes to detect physics BSM)

Studied by many experiment groups (BABAR, Belle, CDF, LHCb,
B-factory etc.)

Ran Zhou (Fermilab) 09/03/2015 3 / 34

Tree-level or loop 
processes - need hadronic 
form factors from lattice 
QCD to obtain SM rate

Tree-level: CKM 
elements, Vub and 
Vcb

Loop: test for new 
physics

B ! ⇡l⌫ semileptonic decay and |Vub|

B ⇡

⌫

l

Vub
W

b u

d

Figure : B ! ⇡l⌫ exclusive decay process.

d�

dq2
/ |Vub|2|f+(q2)|2 Exp.

h⇡|V µ|Bi = f
+

(q2)


pµB + pµ⇡ � M2

B �M2

⇡

q2
qµ

�
+ f

0

(q2)
M2 �m2

q2
qµ

q2 = (pB � p⇡)
2 = M2

B +M2

⇡ � 2MBM⇡E⇡

Ran Zhou (Fermilab) 09/03/2015 15 / 34



B ! ⇡l⌫ semileptonic decay and |Vub|

Figure : Combined fit of lattice-QCD form factors and experimental data.
(arXiv:1503.07839) The combined fit of experimental data and lattice-
QCD data significantly reduced the form factor’s error at low q2.

Ran Zhou (Fermilab) 09/03/2015 16 / 34

B ! ⇡l⌫ semileptonic decay and |Vub|

Figure : Combined fit of lattice-QCD form factors and experimental data.
(arXiv:1503.07839) The combined fit of experimental data and lattice-
QCD data significantly reduced the form factor’s error at low q2.

Ran Zhou (Fermilab) 09/03/2015 16 / 34

semileptonic decay

Fermilab/MILC
arXiv: 1503.07839

Combined fit to lattice 
and experimental results 
improves determination 
of Vub

B ! ⇡l⌫ semileptonic decay and |Vub|

3.2 3.6 4.0 4.4

|V
ub

| × 10
3

UTFit 2014, CKM unitarity

BLNP 2004 + HFAG 2014, B → X
u
lν

Detmold et al. 2015 + LHCb 2015, Λ
b
 → plν

HPQCD 2006 + HFAG 2014, B → πlν

Imsong et al. 2014 + BaBar12 + Belle13, B → πlν

RBC/UKQCD 2015 + BaBar + Belle, B → πlν

Fermilab/MILC 2008 + HFAG 2014, B → πlν

This work + BaBar + Belle, B → πlν

Figure : Comparison of the |Vub| results from di↵erent determinations.
(arXiv:1503.07839)

Ran Zhou (Fermilab) 09/03/2015 18 / 34

1503.07839
new result using 
baryon decay in 
lattice QCD

Conclude: tension 
between exclusive 
and inclusive 
methods remains

1503.01421



B ! ⇡(K )l+l� semileptonic decay

b d(s)

W

Z

l+

l�

d

B

⇡(K)

Loop-level diagram

t

The B ! ⇡l+l� decay was first observed in 2012 by LHCb
(arXiv:1210.2645).
The branching function of the B ! ⇡µ+µ� process is

B(B+ ! ⇡+µ+µ�) = [2.3± 0.6(stat.)± 0.1(syst.)]⇥ 10�8 (3)

The ratio of B+ ! ⇡+µ+µ� to B+ ! K+µ+µ� is

B(B+ ! ⇡+µ+µ�)

B(B+ ! K+µ+µ�)
= 0.053± 0.014(stat.)± 0.001(syst.) (4)

More detailed results are in arXiv:1509.00414.
Ran Zhou (Fermilab) 09/03/2015 20 / 34

semileptonic decay
Standard Model predictions

dB dq
2

(`
=
⌧
)

q2 2

⇢,!,� J/  0

dB dq
2
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Left: FNAL/MILC B ! ⇡ lattice data + exp (arXiv:1503.07839)
Right: (arXiv:1312.2523): old FNAL/MILC B ! ⇡ lattice data
(arXiv:0811.3640) + HPQCD’s B ! K lattice data(arXiv:1306.2384)
+ exp + LCSR + model
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Fermilab/MILC
arXiv: 1507.01618

potential sensitivity to new 
physics through loop 
effects
B ! ⇡`+`�

Ratios of B ! ⇡ll/B ! Kll observables
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Figure : Ratio of partially-integrated branching ratios BR(B ! ⇡`+`�)/BR(B !
K`+`�) in the Standard Model using the lattice form factors, compared
with experimental measurements from LHCb(arXiv:1509.00414). The
errors in the Standard-Model results are dominated by the form-factor
uncertainties.
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Ran Zhou: KITP2015

Br(B+ ! ⇡+µ+µ�) = 20.4(2.1)⇥ 10�9

Lattice QCD gives SM rate:

LHCb : 18.3(2.5)x10-9

Ratio of       to      partially  
integrated rates        

⇡ K

arXiv: 1509.00414



K ! ⇡⇡
K to pi pi decays

Process in which matter-antimatter asymmetry (CP violation) was discovered (1984 Nobel Prize,
Cronin and Fitch BNL)
Quantitative theoretical understanding has been clouded for decades by the strong nuclear force;
solve with DiRAC.

�I = 1/2 rule
Decades-long puzzle of why  
                     450 x more likely 
than 
resolved by lattice QCD. 
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FIG. 10: Dominant contractions contributing to Re(A2): C1 (left) and C2 (right).
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FIG. 11: Cancellation of dominant contributions to Re(A2) on the 483 ensembles with a
K -ππ separation of 27 and the 643 ensembles with separation 36.

Using this ratio, we can calculate the electroweak penguin contribution to ϵ′/ϵ, given by

(

ϵ′

ϵ

)

EWP

≡
ω√
2 |ϵ|

ImA2

ReA2
= −6.6(10)× 10−4, (67)

where we have used the values ω ≡ ReA2
ReA0

= 0.04454(12) and |ϵ| = 2.228(11)× 10−3 from [2].

This value for (ϵ′/ϵ)EWP is consistent with our previously quoted value −6.25(44)(119) ×

10−4 [2]. Finally, for ImA0 we find

ImA0 = ReA0

(

ImA2

ReA2
−

√
2|ϵ|
ω

ϵ′

ϵ

)

= −5.40(64)× 10−11GeV . (68)

The results in Eqs. (67) and (68) were obtained using our result for ImA2/ReA2 in

Eq. (66). If instead we take ImA2 from our calculation, Eq. (64), and combine it with the ex-

perimental result ReA2 = 1.4787(31)×10−8GeV we obtain, ImA2/ReA2 = −4.73(58)×10−5,

(ϵ′/ϵ)EWP = −6.69(82)× 10−4 and ImA0 = −5.42(63)× 10−11GeV.

RBC/UKQCD

unexpected cancellation of different 
colour charge contractions

K ! ⇡⇡(I = 2)

K ! ⇡⇡(I = 0)

3

ing low-mode deflation with 900 Lanczos eigenvectors [36]
with the bagel fermion matrix package [37]. A complete
set of measurements required 20 hours on one half-rack of
an IBM Blue Gene/Q computer [38]. This was in balance
with the 24 hours needed to generate four time units of
gauge field evolution on this same machine.

FIG. 1. Examples of the four types of diagram contributing to
the ∆I = 1/2, K → ππ decay. Lines labeled ℓ or s represent
light or strange quarks. Unlabeled lines are light quarks.

While exploiting our finite lattice volume to create a
final ππ state with Eππ = MK , we must ensure that this
limited volume does not distort the final result. Such
finite-volume corrections take two forms. The first are
errors which fall exponentially with the lattice size and
result from “squeezing” the physical states. Such errors
are expected at the percent level if Lmπ ≥ 4. In our case,
Lmπ = 3.2 and errors ≈ 7% may result [18].

The second are effects falling as a power of L, simi-
lar to the discretization of the energy that we are ex-
ploiting. Here we apply the Lellouch-Lüscher correc-
tion [20] which removes the leading 1/L3 error. This
approach requires our final ππ state to be an “s-wave”
combination of the eight approximate single-pion mo-
menta (±1,±1,±1)π/L. Ensuring this s-wave symmetry
requires care when constructing pion interpolating oper-
ators to minimize cubic-symmetry violations introduced
at the quark level by G-parity boundary conditions.

Essential to this calculation is the ability to define the
seven independent, four-quark, lattice operators which
correspond to those in the continuum Eq. (1). This
is accomplished by using domain wall fermions (DWF).
The chiral symmetry of DWF ensures that the pattern
of operator mixing is the same as that in the continuum
and we can follow well-established procedures [12, 26]
to relate our operators to the continuum operators in
Eq. (1). Specifically we apply the Rome-Southampton
method [39] at µ = 1.53 GeV, to introduce RI/SMOM
normalization [26] and then use continuum QCD pertur-
bation theory [40] to relate this normalization with the
MS normalization used for the Wilson coefficients [3].

ANALYSIS AND RESULTS

The K → ππ matrix elements of the operators Qi can
be determined from the time dependence of the three-
point functions defined in Eq. (2):

⟨Jππ(tππ)Qi(tQ)JK(tK)⟩ = e−Eππ(tππ−tQ)e−MK(tQ−tK)

×⟨0|Jππ(0)|ππ⟩⟨ππ|Qi(0)|K⟩⟨K|JK(0)|0⟩+ · · · . (3)

The ellipses represent contributions from the vacuum fi-
nal state or excited kaon or ππ states. For the “split-
pion” operator Jππ(tππ), tππ is the time closest to tQ.
The operator normalization factors ⟨0|Jππ(0)|ππ⟩ and

⟨K|JK(0)|0⟩ in Eq. (3), as well as the energies MK and
Eππ can be determined from the two-point functions:

⟨0|J†
X(ta)JX(tb)|0⟩ = e−EX(ta−tb)

∣

∣⟨0|JX(0)|X⟩
∣

∣

2
(4)

where X = ππ or K. For X = ππ the contribution
of the vacuum intermediate state to the left-hand side
must be subtracted. Figure 2 shows the effective energy
of the kaon and two-pion states in lattice units as ob-
tained from these two-point functions. The kaon mass
is obtained from an uncorrelated fit using 6 ≤ t ≤ 32.
For the more challenging I = 0, ππ energy, we perform
a correlated, single-state fit over the interval 6 ≤ t ≤ 25,
obtaining χ2/dof = 1.56(68). Consistent results are also
found from a correlated, two-state fit using 3 ≤ t ≤ 25.
We find MK = 490.6(2.4) and Eππ = 498(11). For the
I = 2 state, EI=2

ππ = 573.0(2.9), all in units of MeV. For
later reference we also give results for the I = 0 and 2,
s-wave phase shifts. We find δ0 = 23.8(4.9)(1.2)◦ from
Eππ and the Lüscher quantization condition [41, 42], a
value somewhat smaller than phenomenological expecta-
tions [43, 44]. Here the first error is statistical and the
second an estimate of the O(a2) error. For I = 2 we
will use δ2 = −11.6(2.5)(1.2)◦, a corrected version of the
continuum result obtained in Ref. [19].
An important aspect of type 3 and 4 diagrams is the

quadratic divergence resulting from the quark loop. This
contribution is the same as that from the operator dγ5s
with a divergent coefficient ∼ (ms−ml)/a2. Since dγ5s is
the divergence of an axial current, its matrix element be-
tween initial and final states with equal four-momentum
will vanish and it will not contribute to a physical pro-
cess such as K → ππ. However, for matrix elements be-
tween zero-momentum states with unequal energies, this
term may be 20× larger than the other physical terms.
Even for an approximately energy conserving amplitude,
it will contribute both noise as well as an enhanced sys-
tematic error from enlarged, energy non-conserving, ex-
cited state contamination. We determine the approx-
imate size of such an unphysical piece from the ratio
ri = ⟨0|Qi(tQ)|K⟩/⟨0|dγ5s(tQ)|K⟩ and then subtract,
time slice by time slice, the operator ridγ5s(tQ) [45]. This
dramatically reduces the noise for the operators Q5, Q6,
Q7 and Q8.

SM test of direct CP violation in 
K ! ⇡⇡

First lattice QCD result for 
with physical kinematics 

"0/"

Technically challenging - future: significant accuracy gain

1502.00263 
1505.07863



Hadronic vacuum polarisation contribution to anomalous 
magnetic moment of muon

µ

q

q

B.Chakraborty et al, HPQCD: 1403.1778

(g � 2)µ/2

differs between expt and the SM by 
25(9)⇥ 10�10

Uncertainty dominated by that from 
HVP  contribution calculated from  
expt for Re+e�

a(f)µ,HVP =
↵

⇡

Z 1

0

dq2f(q2)(4⇡↵Q2
f )⇧̂f(q

2)

On lattice, calculate :

very steep function,  
so small q2 dominates

vacuum 
polarisation 
function

*new physics*?

Can we improve ahead of E989 run?
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FIG. 4: Lattice QCD results for the connected contribution to
the muon anomaly aµ from vacuum polarization of s quarks.
Results are for three lattice spacings, and two light-quark
masses: m

lat
` = ms/5 (lower, blue points), and m

lat
` = m

phys
`

(upper, red points). The dashed lines are the corresponding
values from the fit function, with the best-fit parameter val-
ues: ca2 = 0.29(13), csea = �0.020(6) and cval = �0.61(4).
The gray band shows our final result, 53.41(59)⇥10�10, with
m

lat
` = m

phys
` , after extrapolation to a = 0.

TABLE III: Error budgets for connected contributions to the
muon anomaly aµ from vacuum polarization of s and c quarks.

a

s
µ a

c
µ

Uncertainty in lattice spacing (w0, r1): 1.0% 0.6%
Uncertainty in ZV : 0.4% 2.5%

Monte Carlo statistics: 0.1% 0.1%
a

2 ! 0 extrapolation: 0.1% 0.4%
QED corrections: 0.1% 0.3%

Quark mass tuning: 0.0% 0.4%
Finite lattice volume: < 0.1% 0.0%
Padé approximants: < 0.1% 0.0%

Total: 1.1% 2.7%

mistuning of the sea and valence light-quark bare masses:

�xsea ⌘
X

q=u,d,s

m

sea
q

� m

phys
q

m

phys
s

(9)

�x

s

⌘ m

val
s

� m

phys
s

m

phys
s

. (10)

For our lattices with physical u/d sea masses �xsea is very
small. a

2 errors from staggered ‘taste-changing’ e↵ects
will remain and they are handled by c

a

2 . The four fit
parameters are a2

µ

, c
a

2 , csea and cval; we use the following
(broad) Gaussian priors for each:

a

s

µ

= 0 ± 100 ⇥ 10�10

c

a

2 = 0(1) csea = 0(1) cval = 0(1). (11)

Our final result for the connected contribution for

TABLE IV: Contributions to aµ from s and c quark vacuum
polarization. Only connected parts of the vacuum polariza-
tion are included. Results, multiplied by 1010, are shown for
each of the Padé approximants.

Quark [1, 0]⇥ 1010 [1, 1]⇥ 1010 [2, 1]⇥ 1010 [2, 2]⇥ 1010

s 57.63(67) 53.28(58) 53.46(59) 53.41(59)
c 14.58(39) 14.41(39) 14.42(39) 14.42(39)

s quarks to g � 2 is:

a

s

µ

= 53.41(59) ⇥ 10�10
. (12)

The fit to [2, 2] Padé results from all 10 of our configu-
ration sets is excellent, with a �

2 per degree of freedom
of 0.22 (p-value of 0.99). In Fig. 4 we compare our fit
with the data from configurations with m

s

/m

`

equal 5
and with the physical mass ratio.
The error budget for our result is given in Table III.

The dominant error, by far, comes from the uncertainty
in the physical value of the Wilson flow parameter w0,
which we use to set the lattice spacings. We estimate the
uncertainty from QED corrections to the vacuum polar-
ization to be of order 0.1% from perturbation theory [20],
suppressed by the small charge of the s quark. Our re-
sults show negligible dependence (< 0.1%) on the spatial
size of the lattice, which we varied by a factor of two. Also
the convergence of successive orders of Padé approximant
indicates convergence to better than 0.1%; results from
fits to di↵erent approximants are tabulated in Table IV.
Note that the a2 errors are quite small in our analysis.

This is because we use the highly corrected HISQ dis-
cretization of the quark action. Our final (a = 0) result
is only 0.6% below our results from the 0.09 fm lattices
(sets 9 and 10). The variation from our coarsest lattice to
a = 0 is only 1.8%. We compared this with results from
the clover discretization for quarks, which had finite-a
errors in excess of 20% on the coarsest lattices.
Finally we also include results for c quarks in Tables III

and IV. These are calculated from the moments (and er-
ror budget) published in [20]. Our final result for the con-
nected contribution to the muon anomaly from c-quark
vacuum polarization is:

a

c

µ

= 14.42(39) ⇥ 10�10
. (13)

The dominant source of error here is in the determination
of the Z

V

renormalization factors. This error could be
substantially reduced by using the method we used for
the s-quark contribution [26].

III. DISCUSSION/CONCLUSIONS

The ultimate aim of lattice QCD calculations of
a

µ,HVP is to improve on results from using, for exam-
ple, �(e+e� ! hadrons) that are able to achieve an un-
certainty of below 1%. We are not at that stage yet.

New - accurate 
determination of s HVP 
from lattice QCD.

asµ = 53.41(59)⇥ 10�10

1% accurate 

B.Chakraborty et al, HPQCD: 
1403.1778

physical u/d in sea

 640  650  660  670  680  690  700  710  720  730
aµ

HVP x 1010

aµ
HVP, no new physics

Benayoun et al
1210.7184

Hagiwara et al
1105.3149

Jegerlehner+Szafron
1101.2872

ETMC
1308.4327

HPQCD
PRELIMINARY

Total HVP from lattice 
still not accurate enough, 
but significant progress 
…



Future
• Lattice uncertainties being improved substantially            
e.g. with            at physical value and finer lattices/higher 
statistics  

mu,d

• Analysis underway by several groups of effects from 
QED and 

Conclusion
•  Lattice QCD results for gold-plated hadron masses and 
decay constants now providing stringent tests of QCD/SM.  
• Gives QCD parameters and some CKM elements to 1%. 
• Provides BSM constraints, tests of sum rules/HQET etc. 

• The range of methods and calculations is increasing 
“disconnected calculations”, glueballs, unstable particles .. 

mu 6= md e.g. BMW 1406.4088 mn-mp
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B and Bs are fit separately; priors used in the fit are
described in [11]. The amplitudes and energies from the

fits are given in Tables IV and V. a3/2⇥(0)
q is the matrix

element of the leading current J (0)
0 and a3/2⇥(1)

q that of

J (1)
0 and J (2)

0 , whose matrix elements are equal at zero
meson momentum. Notice that the statistical errors in
⇥ do not increase on the physical point lattices, because
they have such large volumes.

We take two approaches to the analysis. The first is
to perform a simultaneous chiral fit to all our results for
⇥,⇥s,⇥s/⇥ and MBs � MB using SU(2) chiral pertur-
bation theory. The second is to study only the physical
u/d mass results as a function of lattice spacing.

For the chiral analysis we use the same formula and
priors for MBs � MB as in [11]. Pion masses used in
the fits are listed in Table V and the chiral logarithms,
l(M2

�), include the finite volume corrections computed
in [18] which have negligible e⇤ect on the fit. For the
decay constants the chiral formulas, including analytic
terms up to M2

� and the leading logarithmic behaviour,
are (see e.g. [19]):

⇥s = ⇥s0(1.0 + bsM
2
�/�

2
⇥) (5)

⇥ = ⇥0

�
1.0 + bl

M2
�

�2
⇥

+
1 + 3g2

2�2
⇥

�
�3

2
l(M2

�)

⇥⇥
(6)

The coe⇧cients of the analytic terms bs, bl are given
priors 0.0(1.0) and ⇥0,⇥s0 have 0.5(5). To allow for
discretisation errors each fit formula is multiplied by
(1.0 + d1(�a)2 + d2(�a)4), with � = 0.4 GeV. We ex-
pect discretisation e⇤ects to be very similar for ⇥ and ⇥s

and so we take the di to be the same, but di⇤ering from
the di used in the MBs �MB fit. Since all actions used
here are accurate through a2 at tree-level, the prior on
d1 is taken to be 0.0(3) whereas d2 is 0.0(1.0). The di are
allowed to have mild mb dependence as in [11]. The ratio
⇥s/⇥ is allowed additional light quark mass dependent
discretisation errors that could arise, for example, from
staggered taste-splittings.

Error % �Bs/�B MBs �MB �Bs �B

EM: 0.0 1.2 0.0 0.0
a dependence: 0.01 0.9 0.7 0.7
chiral: 0.01 0.2 0.05 0.05
g: 0.01 0.1 0.0 0.0
stat/scale: 0.30 1.2 1.1 1.1
operator: 0.0 0.0 1.4 1.4
relativistic: 0.5 0.5 1.0 1.0
total: 0.6 2.0 2.0 2.1

TABLE VI: Full error budget from the chiral fit as a per-
centage of the final answer.

The results of the decay constant chiral fits are plot-
ted in Figs. 1 and 2. Extrapolating to the physical
point appropriate to ml = (mu + md)/2 in the absence
of electromagnetism, i.e. M� = M�0 , we find ⇥Bs =
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FIG. 1: Fit to the decay constant ratio �Bs/�B . The fit
result is shown in grey and errors include statistics, and chi-
ral/continuum fitting.
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FIG. 2: Fit to the decay constants �Bs and �B . Errors on the
data points include statistics/scale only. The fit error, in grey,
includes chiral/continuum fitting and perturbative errors.

0.520(11) GeV3/2, ⇥B = 0.428(9) GeV3/2, ⇥Bs/⇥B =
1.215(7). For MBs �MB we obtain 86(1) MeV, in agree-
ment with the result of [11].
Figs 3 and 4 show the results of fitting MBs � MB

and decay constants from the physical point ensembles
only, and allowing only the mass dependent discretisation
terms above. The results are ⇥Bs = 0.515(8) GeV3/2,
⇥B = 0.424(7) GeV3/2, ⇥Bs/⇥B = 1.216(7) and MBs �
MB = 87(1) MeV. Results and errors agree well between
the two methods and we take the central values from the
chiral fit as this allows us to interpolate to the correct
pion mass.
Our error budget is given in Table VI. The errors that

are estimated directly from the chiral/continuum fit are
those from statistics, the lattice spacing and g and other
chiral fit parameters. The two remaining sources of error
in the decay constant are missing higher order corrections
in the operator matching and relativistic corrections to
the current. We estimate the operator matching error by
allowing in our fits for an amb-dependent �2

s correction to
the renormalisation in Eq. 4 with prior on the coe⇧cient

Look at error budgets to see how things will improve in future ...

for different quantities different systematics are important 

1302.2644: calculation of B, Bs masses and decay constants

errors divided into extrapolation and other systematics:


