General Event Characteristics at 13TeV

Ben Wynne

On behalf of the ATLAS and CMS collaborations University of Edinburgh

Physics In Collision 2015

Introduction

13 TeV! Exciting times!

Superb achievement by the LHC team

I'll be presenting some early results from both ATLAS and CMS

CMS Integrated Luminosity, pp, 2015, $\sqrt{s}=$ 13 TeV

Cross-section measurements

Summary

ATLAS

New layer of silicon pixels mounted on the beam pipe Replaced the Minimum Bias Trigger Scintillators (MBTS)

CMS

New HCAL photosensors, new luminometer, added $4^{\rm th}$ muon station Unfortunately no magnetic field for the results presented here

Summary

Charged particle distributions / minimum bias

ATLAS-CONF-2015-028 CMS-FSQ-15-001

5/33 Minimum bias | ATLAS-CONF-2015-028 | CMS-FSQ-15-001

Selection

Both results based on low pileup runs ($\langle \mu \rangle =$ 0.005) this summer

Some important differences in approach

ATLAS requires:

- Primary vertex formed from at least 2 tracks (p_T > 100 MeV)
- · Veto any events with a second vertex formed from 4 or more tracks
- All tracks analysed have $p_{\mathrm{T}} > 500$ MeV and $|\eta| < 2.5$

Triggering using the MBTS on the calorimeter end caps 8.9 million events

CMS takes the average of two different, inclusive reconstruction approaches:

- Tracklet reconstruction (requires 1 vertex, ignores additional vertices) $|\eta| < 2.0$
- Track reconstruction (requires 1 vertex, includes additional vertices) $|\eta| < 1.8$

Triggering using beam pickup (BPTX) devices on the beam pipe 11.5 million events

Cross-section measurements

Monte Carlo models

Comparing data to a variety of MC generator predictions:

- Pythia 8: general-purpose 2 \rightarrow 2 event generator, implementing Lund string hadronisation. Notable tunes:
 - CUETP8M1 CMS underlying event tune
 - A2 ATLAS minimum bias tune
 - Monash ATLAS combined tune
- EPOS: Gribov-Regge theory implementation targeting heavy ion / air shower simulation. Updated to model LHC pp collisions
- Herwig++: general-purpose 2 \rightarrow 2 event generator, implementing cluster hadronisation. Here tuned to underlying event data
- QGSJET-II: Reggeon Field Theory implementation targeting air shower simulation.
 Default tune

More information in Katarzyna's talk

Cross-section measurements

Summary

Charged particle multiplicity

No single MC model performing best over the whole N_{ch} range, although Pythia 8 A2 and EPOS doing well in the low-multiplicity region of the ATLAS and CMS results respectively

Cross-section measurements

Summary

Pseudorapidity distribution

The LHC minimum bias tune of EPOS performing well, with close competition from the Pythia 8 tunes

Summary

Central production

Not entirely comparable results:

- ATLAS takes average of $p_{\mathrm{T}} >$ 500 MeV tracks in $|\eta| <$ 0.2
- CMS takes average of all tracks in $|\eta| < 0.5$

Cross-section measurements

Momentum distributions

ATLAS also examines the $p_{\rm T}$ distributions of the selected tracks EPOS and Pythia 8 performing well here

Cross-section measurements

Summary

Underlying event

ATL-PHYS-PUB-2015-019

12/33 Underlying event | ATL-PHYS-PUB-2015-019

Cross-section measurements

Underlying event definition

Using the same selections as before, but now defining the orientation of each event relative to the highest p_T track ($p_T^{\text{read}} > 1$ GeV, plotting detector-level results)

Cross-section measurements

Summary

Underlying event activity

Note the varying performance of different generators over the p_{T} range Tunes to UE results (e.g. Herwig++) doing better at high p_{T}^{lead} Contrast with EPOS, which targets minimum bias

Cross-section measurements

Summary

Near-side ridge (ATLAS a little late to the CMS party...)

ATLAS-CONF-2015-027

15/33 Near-side ridge | ATLAS-CONF-2015-027

Two-particle correlation function

Two-dimensional distribution in η , ϕ space:

$$C(\Delta\eta,\Delta\phi) = rac{S(\Delta\eta,\Delta\phi)}{B(\Delta\eta,\Delta\phi)}$$

The position of each particle in an event relative to each other particle

Normalised by pairing particles across events (require similar events: $|\Delta N_{ch}| < 10$ and $|\Delta z_{vtx}| < 10$ mm)

Summary

High multiplicity trigger

In addition to the MBTS trigger, this measurement uses a specific trigger for events with high track multiplicity

Requires at least 60 tracks with $p_{\rm T}$ > 400 MeV, associated with a vertex

The task is made substantially easier by the increase in average track multiplicity between 7 and 13 \mbox{TeV}

Cross-section measurements

Summary

Particle correlation function

Plotting the normalised two-particle correlation function for $10 \leq \textit{N}_{ch} < 30$

Also showing the integral over the range 2 $<|\Delta\eta|<5$

Cross-section measurements

Summary

Particle correlation function

Plotting the normalised two-particle correlation function for $50 \leq \textit{N}_{ch} < 60$

In the integral plot you can start to see the new feature at $\Delta \phi = 0$

Cross-section measurements

Summary

Particle correlation function

Plotting the normalised two-particle correlation function for $90 \le N_{ch} < 100$

Near side ridge now clearly visible

Cross-section measurements

Summary

Particle correlation function

Plotting the normalised two-particle correlation function for $N_{\rm ch} \ge 120$

Strength of the effect consistent with CMS results from 7 TeV data

Cross-section measurements

Summary

PP cross-section

ATLAS-CONF-2015-038

22/33 PP cross-section | ATLAS-CONF-2015-038

Cross-section measurements

Selection

Fiducial region defined by the MBTS (2.07 $< |\eta| <$ 3.86) Model-dependent extrapolation to the full cross-section

Events are selected if two or more MBTS counters show activity above 0.15 pC threshold

Two event selections:

- All MBTS activity on same side of the detector (442,192 events)
- Inclusive (4,159,074 events)

Gives a handle for investigating different event topologies

MBTS activity

Not measuring reconstructed physics objects, just the number of MBTS counters showing activity in the one-side and inclusive selections Donnachie-Landshoff model chosen as nominal ($\alpha(t) = 1 + \epsilon + \alpha' t$, with $\epsilon = 0.085$ and $\alpha' = 0.25$)

Cross-section measurements

Summary

Diffractive event fraction

Using the ratio of one-side to inclusive events (R_{SS}), we have a model-dependent measure of the contribution to the pp cross-section from diffractive events (f_{D})

EPOS and QGSJET predict specific values for R_{SS}

Cross-section measurements

Summary

Fiducial cross-section

Within the fiducial region, the cross-section uncertainty is dominated by luminosity

Cross-section measurements

Summary

Extrapolated cross-section

The total cross-section was extrapolated using the best performing MC model, introducing a corresponding uncertainty

This value (73.1 \pm 0.9(exp) \pm 6.6(lumi) \pm 3.8(extr) mb) is around 1 standard deviation below predicted values

Cross-section measurements

Summary

Inclusive jet cross-section (Preliminary)

ATLAS-CONF-2015-034

28/33 Inclusive jet cross-section | ATLAS-CONF-2015-034

Kinematic region and experimental uncertainties

Jet definition:

- Anti-kT algorithm, R = 0.4
- $346 \le p_{\mathrm{T}} \le 838 \ \mathrm{GeV}$
- |*y*| < 0.5

Single jet trigger Require 1 vertex

Integrated luminosity 78 pb⁻¹ (9% uncertainty not shown)

Jet energy scale and resolution uncertainties included: see ATL-PHYS-PUB-2015-015

Unfolding uncertainty also significant

Cross-section measurements

Summary

Inclusive jet cross-section

MC corrected for non-perturbative effects, with uncertainties arising from this and choices of scale, α_s , etc.

Predictions agree with corrected data within errors

Summary

Summary

13 TeV!

A great start to a very exciting new LHC run:

- · Charged particle multiplicities measured and well-modelled
- Underlying event distributions a little trickier
- ATLAS can (finally) see the 'ridge' in pp data
- Proton-proton cross-section measurement a little lower than predicted
- Jet cross-section predictions looking solid

More 13 TeV results on the agenda, and 25ns data-taking is in full swing

Cross-section measurements

Summary

ATLAS 6.9 TeV di-jet event

Cross-section measurements

Summary

CMS 5 TeV di-jet event

