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WKB solutions and Voros symbols

@ Schrédinger equation on a compact Riemann surface C:

d2
(752E - 0(x, h))w =0 (x:local coordinate of C.)

Q(x, 1) = Qo(x) + H*Q,(x): meromorphic in x.
(Globally: Qy = quadratic differential, Q,: projective connection)
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@ Schrédinger equation on a compact Riemann surface C:
2
hzd— - O(x, 7|y =0 (x:local coordinate of C.)
dx?
Q(x, 1) = Qo(x) + H*Q,(x): meromorphic in x.
(Globally: Qy = quadratic differential, Q,: projective connection)

@ WKB (formal) solution (= section of K.'/?)

Y(x.h) = exp (h" - f P dx), ACe 1) = D 1 ,(x) = VQo(x) + O(h)

n>0
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@ WKB (formal) solution (= section of K.'/?)

Y(x.h) = exp (h" - f P dx), ACe 1) = D 1 ,(x) = VQo(x) + O(h)

n=0
exp (h_l . §/l(x, i) dx)
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exp (rfl : f (A0x 1) = 20(x)) dx)
B

¥ c T*C is the spectral curve:
(locally = = {(x,€) | € = Qo(x)})

@ Voros symbols:

Yy

e

Ws

e

vi € Hi(E,2)
Bi€ Hi(E,P,Z)
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¥ c T*C is the spectral curve:
(locally = = {(x,€) | € = Qo(x)})

@ Voros symbols:

Yy

e

Ws

e

vi € Hi(E,2)
Bi€ Hi(E,P,Z)

@ Exact WKB analysis = WKB + Borel resummation: [Voros 83], [Ecalle 81],...
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Borel summation and Stokes graph

@ Borel resummation = (Laplace transf) o (term-wise Laplace transf.)™!
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Borel summation and Stokes graph

@ Borel resummation = (Laplace transf) o (term-wise Laplace transf.)™!

o

f(x,h) = Z nlxH

n=0
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Borel summation and Stokes graph

@ Borel resummation = (Laplace transf) o (term-wise Laplace transf.)™!

1
(x,h) = n!x"H (x,y) := Xy = : Borel transform
/ Z; w7 Z(; 1= (y/x)
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Borel summation and Stokes graph

@ Borel resummation = (Laplace transf) o (term-wise Laplace transf.)™!

: Borel transform

fx,n) = Z nlx " o~ fa(x,y) = Z x7"y"

1
=0 -y /n! =0 S 1- (y/x)
—y/h

e
1= (y/x)

~ o S[fIxR) = L(fs(x,y))=f0

dy : Borel sum
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Borel summation and Stokes graph

@ Borel resummation = (Laplace transf) o (term-wise Laplace transf.)™!

: Borel transform

fx,n) = Z nlx " o~ fa(x,y) = Z x7"y"

1
=0 m* =y n! n=0 Ci- O/x)
e
1-(/x)
@ Borel sum “‘jumps” when x crosses R.o: S, [f] = S_[f] + 2mixe /"

~ o S[fIxR) = L(fs(x,y))=f0

dy : Borel sum

singularity of f (on y-plane) <  Stokes phenomenon
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Borel summation and Stokes graph

@ Borel resummation = (Laplace transf) o (term-wise Laplace transf.)™!

[se] 0 1

fx,n) = n!x"H (x,y) := x"y" = ———— : Borel transform
,,Z:(; -y /n! fo nzz(; 1=@/x)

—y/h

1-(/x
@ Borel sum “‘jumps” when x crosses R.o: S, [f] = S_[f] + 2mixe /"

~ o S[flxh) = L(fg(x,y))=f dy : Borel sum
0
singularity of f (on y-plane) <  Stokes phenomenon

@ Stokes graph (= spectral network) consists of trajectories:

X

Im Qo(x") dx =0 (v : a zero (or simple-pole) of Q(x) dx?)
Qo) = . Qo = L2, Qo) = 1- 2,

x2(x—1)?



Recall: y(x,7) = exp (™" - [ A(x,7) dx), A(x,h) = VQo(x) + O(h).

@ If the path a never hits saddle connection, (x, %) is Borel summable.
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Recall: y(x,7) = exp (™" - [ A(x,7) dx), A(x,h) = VQo(x) + O(h).

@ If the path a never hits saddle connection, (x, %) is Borel summable.

@ Jump of ¥(x, ) on Stokes graph is described by an explicit formula.

This agree with Gaiotto-Moore-Neitzke’s path-lifting in rank 2 case.
(work in progress: with A. Neitzke and N. Nikolaev.)
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two distinct simple zeros of Qy(x) dx?, then



Recall: y(x,7) = exp (™" - [ A(x,7) dx), A(x,h) = VQo(x) + O(h).
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@ Jump of ¥(x, ) on Stokes graph is described by an explicit formula.

This agree with Gaiotto-Moore-Neitzke’s path-lifting in rank 2 case.
(work in progress: with A. Neitzke and N. Nikolaev.)

@ If the path « intersects with a saddle which connects
two distinct simple zeros of Qy(x) dx?, then

» Borel transform has singularities at

Wy =M - ﬁ,}v @dx (m € Z#O)-

Here v, € H((Z,Z) is the cycle around the saddle (“saddle class”).
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@ Jump of ¥(x, ) on Stokes graph is described by an explicit formula.

This agree with Gaiotto-Moore-Neitzke’s path-lifting in rank 2 case.
(work in progress: with A. Neitzke and N. Nikolaev.)

@ If the path « intersects with a saddle which connects
two distinct simple zeros of Qy(x) dx?, then

» Borel transform has singularities at

Wy =M - ﬁ,}v @dx (m € Z#O)-

Here v, € H((Z,Z) is the cycle around the saddle (“saddle class”).

> The corresponding Stokes jump is:
S- ol = S, [l[/[y . (] + eVY‘)«’Q’.&J

where
e" =exp (% Alx, h) dx) : Voros symbol
s

(c.f., [Delabaere-Dillinger-Pham 93], [Aoki-Kawai-Takei 08].)
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Cluster mutation = Stokes phenomenon

@ For each rectangular Stokes region D;, set

eV exp (h’l -Sg/l(x, h) dx)
Yi

exp (h" . f (/l(x, h)—/lo(x)) dx)

Bi

Ws,

i

e
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Cluster mutation = Stokes phenomenon

@ For each rectangular Stokes region D;, set
exp (h’l ~56/l(x, h) dx)

Vi = exp (h’l . f(/l(.x, n) — /lo(x)) dx)
Bi

Theorem [Gaiotto-Moore-Neitzke 09, |-Nakanishi 14]
Stokes jump for these Voros symbols = cluster mutations:

VY!'

e

@ Borel sum of Voros symbol " = cluster x-variable.

@ Borel sum of Voros symbol e"» = cluster y-variable.

n

P {l_[ xj[bjk]+J(1 o0 i=k {)’kl i=k
Ay Ul L T —bri

o Pk YiVk (1 + yx) i # k.
bij = {yi,vj), lal, = max(a,0).

yi=c¢i- l—l(xj)bf" ci = exp (h_] 56 VOo(x) dx) : “coefficient”
j=1 Yi




Mutation for path / cycles

@ Saddle connection causes “mutation” of Stokes graph:
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Mutation for path / cycles

@ Saddle connection causes “mutation” of Stokes graph:

<

@ Mutation formula for path/cycles:

5 = {—ﬁk+2';-.[—<yj,yk>]+-/3,- i=k , {—yk

B; i#k. i el v

(k = label of Stokes region which vanishes under mutation)

i=k

i#k.
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Mutation for path / cycles

@ Saddle connection causes “mutation” of Stokes graph:

<

@ Mutation formula for path/cycles:

5 = {—ﬁk+2';-.[—<yj,yk>]+-/3,- i=k , {—yk

B i#k. S P (O A
(k = label of Stokes region which vanishes under mutation)

@ Delabaere-Dillinger-Pham’s formula:

S_[e"] =

e (e en) ™|

S
S_[e"8] S, [eW/‘ -(1 + eVVX)(m'v>

[E—

i=k

i#k.
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More on Voros symbols and cluster algebras

O>—

(i) loop-type saddle (ii) saddle with a simple-pole
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More on Voros symbols and cluster algebras

O—
(i) loop-type saddle (ii) saddle with a simple-pole
Theorem [I-Nakanishi 14, Aoki-I-Takahashi 16]
(i) Forthe loop-type saddle around a double-pole:
S]] = Si[e"]
S = 8, [eWﬂ-(l—vev)‘w”“’>]

“Local rescaling” of cluster x-variable.




More on Voros symbols and cluster algebras

p .
@7 Iy characteristic exponent at p

(i) loop-type saddle (ii) saddle with a simple-pole
Theorem [I-Nakanishi 14, Aoki-I-Takahashi 16]
(i) For the loop-type saddle around a double-pole:
S[e"] = Sile"]
Se% = S, [ewﬁ ) (1 —e"w)%’y"”]
“Local rescaling” of cluster x-variable.

(ii) For a saddle connecting a simple-zero and a simple-pole p:

7 . Sy NS
S[e7] = S, [e‘/y-(l +(t,+ 1) e +e-"w)w J

s
S [ = S, [ewﬁ-(l +(ty+1,) e +e2"w) ! J

“Generalized cluster transform” (c.f., [Chekhov-Shapiro 11]).
([Koike 00] : Exact WKB analysis near a simple-pole.)
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Painlevé equations with a small parameter

@ Painlevé equations are discovered by Painlevé and Gambier:

d2

Py hzd—t;] =647 +1
d2

(Pm) P - 2¢° +tg+a
dr?

d*q (1 1 1 \(dq\? 1 1 1 \dq
P gt N R e
(Pvo) hdtz 2q+q—1+q—t dt t+t—l+q—tdt

2(q-1)g-D(ak et o -1 -1

2(t-1)?

+_ —_——
4 44 4(q-1P 4(@q-1?
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Painlevé equations with a small parameter

@ Painlevé equations are discovered by Painlevé and Gambier:

d2
(P) = WL =64 +1
d2
(Pu) hzd_t;] = 2q3 +tg+a

2 2 2
(PVI) : hZM - h_(l + L + L)(@) _hz(l + L + L)ﬁ
e 2\q q-1 qg-tN\dt t t—=1 g-—tldt
2q(qg-Dg-0(ak ot o (=1 aui-1)
2(t-1)?

+_ —_——
4 44 4(q-1P 4(@q-1?

@ Many nice properties:
Painlevé property (movable singularity must be a pole), isomonodromy
deformation, Hamiltonian description, affine-Weyl symmetry, space of initial
conditions (= quiver variety), non-linear Stokes phenomenon, conformal
block expansion of solutions, ... (See [Fokas-Its-Kapaev-Novokshenov 06].)
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2
P-Voros symbol of (Py) : 1224 = 2¢° + tq + a
@ Formal power series solution
gt h) = )" W'gu() = qo(t) + hqr(1) + W qa(t) + -+
n>0
> Top term satisfies 2q; + tqo + « = 0.

» This formal solution appears from topological recursion
([Eynard-Orantin 07], [Borot-Eynard 10], ..., [-Marchal-Saenz 16]).
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P-Voros symbol of (Py) : 1224 = 2¢° + tq + a
@ Formal power series solution
gt h) = )" W'gu() = qo(t) + hqr(1) + W qa(t) + -+
n>0
> Top term satisfies 2q; + tqo + « = 0.

» This formal solution appears from topological recursion
([Eynard-Orantin 07], [Borot-Eynard 10], ..., [I-Marchal-Saenz 16]).

@ Trans-series solution (instanton-type solution):

13
Goans (1, 4) = Y AF - g0t T) - 4O, g(o) = f V6qo(s)? + s ds

k>0
» k=1partot h;A) = A- gV, h) - D" satisfies

h2d2¢_(6 O (1. )2
= = (6401 +1) g e ()

@ Define P-Voros symbol as the Voros symbol for (x):

Theorem [l 14]

v, :2nia~h_], W = Z

(il = 21—2;:) . BZg % 2g-1
(07

262g-1) \a




2

,d*q
Non-linear Stokes phenomenon for (Py) : 7> —

a2 —2q +1qg+a

(Pp) witha =1 (on go-plane)

Q
Q

@ P-Stokes graph: Im f \6q0(s)? + s ds = 0. ([Kawai-Takei 96])
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@ Assume P-Stokes graph has no saddle connection.
~> quans(t, 7i; A) is Borel summable on the region Re ¢(z) < 0.
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2

,d*q
Non-linear Stokes phenomenon for (Py) : 7> —

a2 —2q +1qg+a

(Pp) witha =1 (on go-plane)

Q
Q

@ P-Stokes graph: Im f \6q0(s)? + s ds = 0. ([Kawai-Takei 96])

@ Assume P-Stokes graph has no saddle connection.
~> quans(t, 7i; A) is Borel summable on the region Re ¢(z) < 0.

Non-linear Stokes phenomenon (c.f., [Kapaev 04])

Sa,[q(t, W] = Sq, [Guans (1,15 A)]
9 Lol a/h
The constant A is chosenas A= -—— - Vi e fa/h) :
2/ T(% + 3)
A = (non-linear Stokes multiplier of (P)) x (Borel sum of the Voros symbol e"s.)
12/15




Stokes graph of isomonodromy system and mutation
Isomonodromic deformation and exact WKB ([Kawai-Takei 96]):

62
Pl ‘” L Qux )y,

P g3

4 2
=x"+tx" 4+ 2ax+2Hy —
Qun =" +1x" +20x+2Hy — h—— PR T

: P-Stokes graph (on r-plane)

atr=1. atr=1 attr=1o.
Stokes graphs of isomonodromy system (on x-plane). .



Saddle connections in P-Stokes graph

a=i+¢ a=1i a=i—¢
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Saddle connections in P-Stokes graph

a=i+¢ a=i a=i—-¢
These saddle connections play the role of wall of marginal stability:

Theorem [l 13, 14]

@ If ¢ lies outside of the wall, the Borel transform has singular points at
y = 2mmia (m € Z4) and

S [Gans(t 7 Al = S_[Gueans(t, 3 A)] with A = (1 + &) - A




Saddle connections in P-Stokes graph

a=i+¢ a=i a=i—-¢
These saddle connections play the role of wall of marginal stability:

Theorem [l 13, 14]

@ If ¢ lies outside of the wall, the Borel transform has singular points at
y = 2mmia (m € Z4) and

S+ [Grrans (8, 5 A)] = S_[Gurans (2, i3 A)] with A = (1 + ¥/ . A

@ If 7 lies inside of the wall:

S, [Gtrans(t, B3 A)] = S [Gtrans (2, 715 A)]

v
L 2 9




Problems

Exact WKB analysis of linear differential equations:
@ Higher rank ODEs (Aoki-Kawai-Koike-Takei, Gaiotto-Moore-Neitzke,
Katzarkov-Noll-Pandit-Simpson, ...).
> Borel summability.
» Exact WKB analysis < cluster algebra dictionary.
@ Relation / application to topological recursion.
@ Exact qunatization condition (Marino, Grassi, Kashani-Poor, ...)

Exact WKB analysis of non-linear differential equations:
@ 2-parameter formal solution of Painlevé equations (Aoki-Kawai-Takei).

q(t,h;A, B) = Z Ak gl ,q(kukz)(t’ h) - e(krkz)d)(t)/h
ky,kp=0
» Borel summability.
» Stokes multipliers (Its, Kapaev, Aniceto, Schiappa, Pasquetti, ...)
> Relation to conformal block 2-parameter solutions (Lisovyy, Nagoya, ...)
@ Generalization to KdV-type integrable hierarchies.
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> Borel summability.
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Exact WKB analysis of non-linear differential equations:
@ 2-parameter formal solution of Painlevé equations (Aoki-Kawai-Takei).
q(t,h;A, B) = Z Ak gl ,q(kl,kz)(t’ h) - e(krkz)d)(t)/h
ky,kp=0

> Borel summability.

» Stokes multipliers (Its, Kapaev, Aniceto, Schiappa, Pasquetti, ...)

> Relation to conformal block 2-parameter solutions (Lisovyy, Nagoya, ...)
@ Generalization to KdV-type integrable hierarchies.

Thank you for your attention !
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