SUSY field theory and geometric Langlands The other side of the coin

Jörg Teschner

String-Math 2016 June 27, 2016

Based on work in progress with A. Balasubramanian, I. Coman-Lohi and earlier work with E. Frenkel, S. Gukov

The geometric Langlands correspondence:

... has gained many faces. One of the earliest:

^L
$$\mathfrak{g}$$
-opers on $\mathcal{C} \longrightarrow \mathbb{D}$ -modules on $\operatorname{Bun}_{\mathcal{G}}(\mathcal{C})$

 \mathfrak{sl}_N -opers: DO's of the form $\partial_y^N - w_2(y)\partial_y + \cdots + w_N(y)$ on C. \mathcal{D} -mod on $\operatorname{Bun}_G \sim \operatorname{Eqns.} H_r\psi = E_r\psi$, H_r : q-Hitchin Hamiltonians

– Precursor of a spectral decomposition of \mathcal{D} -modules –

CFT-approach:

- Affine algebra $\hat{\mathfrak{g}}_k$ has large center at critical level $k = -h^{\vee}$.
- $\hat{\mathfrak{g}}_k$ -reps parameterised by restrictions of opers to formal discs.
- Assign to resulting collection of \hat{g}_k -reps a space of conf. blocks.
- Space of conf. blocks: \mathcal{D} -moldule by $\hat{\mathfrak{g}}_k$ -Ward identities.

 \exists many extensions: Local systems, categorical \ldots

Gauge theory: (Kapustin-Witten, Gukov-Witten) Starting point: N = 4 SYM on $\mathcal{M}^4 = \mathbb{R} \times \mathbb{I} \times C$.

Topologically twisted theory effectively represented by sigma-model on $\mathbb{R} \times \mathbb{I}$, target $\mathcal{M}_{H}(\mathcal{C}, \mathcal{G})$.

- Integrability: M_H(C, G) ∼ tori 𝔅_p fibered over points p of a base 𝔅
- S-duality → SYZ mirror symmetry.
 Fibration of (T-) dual tori ≃ M_H(C, Ğ), where
 Ğ: Langlands dual of group G.

Allows to understand (see below):

- $+\,$ Hecke functors from (4d)_{\rm N=4} Wilson- and 't Hooft loops
- $+ \mathcal{D}$ -module structure

Not so clear:

- Relation to CFT

2d TQFT-framework I

2d topological sigma model on strip $\mathbb{R} \times \mathbb{I}$, $\mathbb{I} = [0, \pi]$.

- ▶ C: category of boundary conditions ("branes") at ends of I.
- $\mathcal{Z}(\mathbb{I}_{\mathfrak{B}_1\mathfrak{B}_2}) \equiv \operatorname{Hom}(\mathfrak{B}_1,\mathfrak{B}_2).$
- For distinguished brane \mathfrak{B}_{cc} :
 - ▶ $\mathcal{A} := \operatorname{Hom}(\mathfrak{B}_{\operatorname{cc}}, \mathfrak{B}_{\operatorname{cc}})$ has natural algebra structure,
 - $\mathcal{M}^l_{\mathfrak{B}} := \operatorname{Hom}(\mathfrak{B}_{\operatorname{cc}}, \mathfrak{B})$ has natural (left) module structure,

each of which defined by "joining strips".

Branes for Geometric Langlands

- ▶ (B, A, A)-brane \mathfrak{F}_p supported on torus fiber over point $p \in \mathfrak{B}$
- S-duality/mirror symmetry → skyscraper sheaf on Loc_Ğ(C) (moduli space of flat Ğ-connections on C)
- ► ~→ Hecke eigenvalue property.
- D-mod structure: From brane 𝔅_{cc}: alg. 𝔅 ≡ 𝔅_{-h[∨]}(Bun), deformation of Fun(𝔅_H(𝔅)) ≃ Fun(𝔅^{*}Bun_𝔅).

Similar: AGT via 2d topological Sigma models (Nekrasov-Witten)

Starting point: N = 2 SUSY field theory of class S on $\mathcal{M}^4_{\epsilon_1\epsilon_2}$, where $\mathcal{M}^4_{\epsilon_1\epsilon_2}$: $S^1_{\epsilon_1} \times S^1_{\epsilon_2}$ -circle fibration over $\mathbb{R} \times \mathbb{I}$ with Ω -deform.. Effectively represented by reduction on $S^1_{\epsilon_1} \times S^1_{\epsilon_2}$

 \rightsquigarrow 2*d* sigma model, target $\mathfrak{M}_{\mathrm{H}}(\mathcal{C})$,

→ boundary conditions represented by (A, B, A)-brane $\mathfrak{B}_{cc}(G) \simeq \mathfrak{B}_{op}(\check{G})$

 $\mathfrak{B}_{\mathrm{op}}(\check{G})$: The Lagrangian submfd. in $\mathcal{M}_{\mathrm{char}}(C) \simeq \mathrm{Hom}(\pi_1(C), G)/G$, represented by monodromies of DO's $\partial_y^N - w_2(y)\partial_y + \cdots + w_N(y)$ on C.

Relation to Virasoro conformal blocks:

Nekrasov and Witten argue that

- ▶ Algebra $\mathcal{A} \simeq \mathcal{A}_{\epsilon_1/\epsilon_2}^\mathfrak{g} \simeq$ quant. alg. of functions on $\mathfrak{M}_{\mathrm{char}}(\mathcal{C})$
- ▶ $\operatorname{Hom}(\mathfrak{B}_{\operatorname{cc}},\mathfrak{B}_{\operatorname{op}}) \simeq \operatorname{Hom}(\check{\mathfrak{B}}_{\operatorname{op}},\check{\mathfrak{B}}_{\operatorname{cc}})$ naturally bimodule

$$\mathcal{A}^{\mathfrak{g}}_{\epsilon_{1}/\epsilon_{2}} \, \triangleright \, \operatorname{Hom}(\mathfrak{B}_{\mathrm{cc}}, \mathfrak{B}_{\mathrm{op}}) \simeq \operatorname{Hom}(\check{\mathfrak{B}}_{\mathrm{op}}, \check{\mathfrak{B}}_{\mathrm{cc}}) \, \triangleleft \, \mathcal{A}^{\check{\mathfrak{g}}}_{\epsilon_{2}/\epsilon_{1}}$$

 $\Rightarrow \ \mathrm{Hom}(\mathfrak{B}_{\mathrm{cc}},\mathfrak{B})\simeq \mathrm{CB}(\mathcal{C},\mathfrak{Vir}) \ \text{(modular duality} \ \rightarrow \ \texttt{later}).$

Nature of modular duality

Two commuting actions of algebras A_ħ and Ă_{1/ħ} realised on same maximal domain S

Example: Let

where
$$[x]_b = rac{\sin \pi b x}{\sin \pi b^2}$$
 and $Q = b + b^{-1}$.

Claim: Operators E, F, K and \tilde{E} , \tilde{F} , \tilde{K} , obtained by $b \to b^{-1}$, generate **commuting** actions of $\mathcal{U}_q(\mathfrak{sl}_2)$, $q = e^{\pi i b^2}$, and $\mathcal{U}_{\tilde{q}}(\mathfrak{sl}_2)$, $q = e^{\pi i b^{-2}}$ on common **maximal** domain $S \subset L^2(\mathbb{R})$.

 $\label{eq:constraint} \begin{array}{l} \Rightarrow \ \exists \ {\sf Canonical \ topology \ on \ } S \ {\sf defined \ by \ } {\cal A}_{\hbar} {\rm -module \ structure \ } \\ \Rightarrow \ \exists \ {\sf Canonical \ topological \ dual \ } S'. \end{array}$

Similar story for $\mathcal{A} \simeq \mathcal{A}_{\epsilon_1/\epsilon_2}^{\mathfrak{g}}$.

A unified picture?

Start with 6*d* theory \mathfrak{X} on mfd. of the form $\mathfrak{M}^4_{\epsilon_1\epsilon_2} \times C$, where $\mathfrak{M}^4_{\epsilon_1\epsilon_2}$: circle fibration over $\mathbb{R} \times \mathbb{I}$.

NW Top. twist on $\mathcal{M}^4_{\epsilon_1\epsilon_2}$, reduction on $C \rightsquigarrow AGT$

KW Top. twist on $\mathbb{R} \times \mathbb{I} \times C$, reduction on $S^1_{\epsilon_1} \times S^1_{\epsilon_2} \rightsquigarrow$ Geometric Langlands a là Kapustin-Witten.

Further reduction to 2d: The same TQFT !?!?

Results do not quite seem to fit:

- ▶ Reduction KW should give sthg. topological on C, but description of 𝔅_{cc} used to see 𝔅-modules uses complex structure of C.
- Reduction NW should give sthg. conformal on C, but description of B_{cc} used to see A_q-modules uses description as M_{flat} which is topological.

To see the other side of the coin: Brane \mathfrak{B}_{x}^{WZ}

- In (2d)_{TFT}: Supported on fiber of M_H(C) ~ T*Bun_G(C) over point x ∈ Bun_G(C)
- In (4d)_{AGT}: Surface operator defined by singular behaviour of all gauge fields
- ► In (4d)_{N=4}: Zero (!) Nahm pole.
- ▶ In (6*d*): **Co-dim 2 defect** wrapping $\mathcal{M}^2 \times C$.

Features:

- ▶ Valid SUSY boundary condition in *N* = 4 (Gaiotto-Witten)
- Has global G symmetry \rightsquigarrow gauge symmetry G on C.

Emergence of current algebra:

Claim:

$$\operatorname{Hom}(\mathfrak{B}_{\operatorname{cc}},\mathfrak{B}_{x}^{\operatorname{WZ}})\simeq\operatorname{CB}(\mathcal{C},\hat{\mathfrak{g}}_{k})$$

as $\mathcal{A} \simeq \mathcal{D}_k(\operatorname{Bun}_G)$ -modules, where

- $CB(C, \hat{\mathfrak{g}}_k)$ space of conformal blocks for $\hat{\mathfrak{g}}_k$,
- $\blacktriangleright \ k+h^{\vee}=-\epsilon_2/\epsilon_1.$

Available support

- ▶ In (2*d*)_{TFT}: Arguments à la KW, GW, NW.
- In (4d)_{AGT}: Instanton calculus (Braverman, Alday-Tachikawa, Negut, Nawata, Nekrasov)
- ▶ In $(4d)_{N=4}$: Arguments à la Gaiotto-Witten, Cordova-Jafferis.
- ▶ In (11*d*)_M: Arguments of Frenkel-Gukov-J.T..

Relation to Separation of Variables

Proposal of Frenkel-Gukov-J.T. can be formulated as the statement that the co-dim 2 surface operator has an effective IR description in terms of a collection of co-dim 4 surface operators.

Supported on points on C. Need h = 4g - 4 + n co-dim 4 surface ops. for $g = \mathfrak{sl}_2$. Case $g = \mathfrak{sl}_3$: Work in progress.

Co-dim 4 surface operators modify conformal blocks $CB(C, \mathfrak{Vir})$ in AGT-correspondence by insertions of degenerate representations. (Alday-Gaiotto-Gukov-Tachikawa-Verlinde)

 \Leftrightarrow Representation of $CB(\mathcal{C}, \hat{\mathfrak{sl}}_{2,k})$ in terms of $CB(\mathcal{C}, \mathfrak{Vir})$.

This representation can be see as a quantisation of the Separation of Variables method in integrable models.

Generalisation to $\hat{\mathfrak{sl}}_{3,k}$: In progress.

One road to quantum geometric Langlands - I Mathematical translation:

- ▶ q-𝔅𝔅: Quantum Geometric Langlands
- SDV: Separation of variables
 Math: Passage to Whittaker model ("coefficient functor")
- ► i∂: Duality of *W*-algebras of Feigin and Frenkel

Comparison Beilinson-Drinfeld with Kapustin-Witten:

 \mathcal{D} -modules Δ_k^{WZ} at $k = -h^{\vee}$ corresponding to sheaves of conformal blocks in CFT can be described as **double fibration**:

- Fixing bundle: $\Delta_{-h^{\vee}}^{WZ}|_{x} \simeq \operatorname{Hom}(\mathcal{B}_{cc}, \mathcal{B}_{x}^{WZ})$
- Fixing oper: $\Delta_{-h^{\vee}}^{WZ}|_{p} \simeq \operatorname{Hom}(\mathcal{B}_{cc}, \mathcal{F}_{p})$

Left: Beilinson-Drinfeld, right: Kapustin-Witten.

(Second iso uses choice of reference oper/uniformisation)

This is how \mathcal{B}_{x}^{WZ} represents the "other side of the coin". Generalisation **opers** \rightarrow **local systems**: Opers with singularities.

Purely topological branes - I

There exist many branes $\mathfrak{B}_{\mathcal{L}}$ w/o dependence on cplx. structure of C, e.g. corresponding to Lagrangians \mathcal{L} in character variety.

- ▶ Algebra $\mathcal{A} \simeq \mathcal{A}_{\epsilon_1/\epsilon_2}^{\mathfrak{g}} \simeq$ quant. alg. of functions on $\mathfrak{M}_{\mathrm{char}}(\mathcal{C})$
- ▶ $\operatorname{Hom}(\mathfrak{B}_{cc},\mathfrak{B}) \simeq \operatorname{Hom}(\check{\mathfrak{B}},\check{\mathfrak{B}}_{cc})$ naturally bimodule

How to relate the topological to the conformal story (Or: Betti versus De Rham quantum geometric Langlands corr.)

• Proposal (claim for
$$\mathfrak{g} = \mathfrak{sl}_2$$
)

$$egin{aligned} &\operatorname{Hom}(\mathfrak{B}_{\operatorname{cc}},\mathfrak{B}_{\chi}^{\operatorname{WZ}})\simeq\operatorname{CB}_{\mathcal{E}_{\chi}}(\mathcal{C},\hat{\mathfrak{g}}_{k}), \ &\operatorname{Hom}(\mathfrak{B}_{\operatorname{cc}},\mathfrak{B}_{\mathcal{L}_{\mathfrak{g}}})\simeq &\operatorname{CB}_{\mathcal{L}_{\mathfrak{g}}}(\mathcal{C},\hat{\mathfrak{g}}_{k}), \end{aligned}$$

as modules of $\mathcal{A}_q^{\mathfrak{g}}$ (CB: via Verlinde loop operators)

- Mathematically: A conjecture of Kazhdan-Lusztig type
- For $\mathfrak{g} = \mathfrak{sl}_2$: Follows from results of J.T.-Vartanov + SOV.

2d TQFT-framework II

2d topological sigma model on strip $\mathbb{R} \times \mathbb{I}$, $\mathbb{I} = [0, \pi]$.

Recall: C: category of branes, $\mathcal{Z}(\mathbb{I}_{\mathfrak{B}_1\mathfrak{B}_2}) \equiv \operatorname{Hom}(\mathfrak{B}_1, \mathfrak{B}_2)$, $\mathcal{A} := \operatorname{Hom}(\mathfrak{B}_{cc}, \mathfrak{B}_{cc})$ has natural algebra structure, and $\mathcal{A}^{\mathfrak{g}}_{\epsilon_1/\epsilon_2} \triangleright \operatorname{Hom}(\mathfrak{B}_{cc}, \mathfrak{B}) \simeq \operatorname{Hom}(\mathfrak{B}, \mathfrak{B}_{cc}) \triangleleft \mathcal{A}^{\check{\mathfrak{g}}}_{\epsilon_2/\epsilon_1}$.

- ▶ Let $\mathbb{V}_{\mathfrak{B}_1\mathfrak{B}_2} \simeq \mathbb{R}_{<0} \times \mathbb{I}_{\mathfrak{B}_1\mathfrak{B}_2} \cup \{\infty\}$ be a triangle with "upper" side removed. Define state $\Psi_{\mathfrak{B}_1\mathfrak{B}_2} \equiv \mathbb{Z}(\mathbb{V}_{\mathfrak{B}_1\mathfrak{B}_2}) \in \mathcal{H}_{\mathfrak{B}_1\mathfrak{B}_2}$.
- Let T^{B₃}_{B₁B₂} ≃ ℝ_{≤0}×I_{B₁B₂} ∪ {∞} be a triangle with "upper" side decorated with B₃. Define wave-function of Ψ_{B₁B₂}:

$$\Psi_{\mathfrak{B}_1\mathfrak{B}_2}(\mathfrak{B}_3)\equiv \mathfrak{Z}(\mathbb{T}^{\mathfrak{B}_3}_{\mathfrak{B}_1\mathfrak{B}_2})\in\mathbb{C}\,.$$

- (4d)_{AGT}-description: Wave-fct. defd. by path-integral over half-ellipsoid ℝ^{4,−}_{ϵ1,ϵ2} ≃ ℝ_− × I × S¹_{ϵ1} × S¹_{ϵ2}; b.c.: fixing scalar zero modes a on ∂ℝ^{4,−}_{ϵ1,ϵ2}. Resulting brane: 𝔅_{La}.
- Output: Chiral partition function $\Psi_{\mathfrak{B}_{cc}\mathfrak{B}_{x}^{WZ}}(\mathfrak{B}_{\mathcal{L}_{a}}) \equiv \mathfrak{Z}_{C}(a, x)$. Also known as instanton partition function in 4*d*.

Fixing Lagrangians

To fix a Lagrangian use Darboux-coordinates (a, t) for $\mathcal{M}_{char}(C)$,

$$\Omega = \sum_r da_r \wedge dt_r$$
 .

(for \mathfrak{sl}_2 : Nekrasov-Rosly-Shatashvili; "Good" coords. for \mathfrak{g} ?) Fixing $a \rightsquigarrow$ Lagrangian \mathcal{L}_a . We have:

$$\operatorname{Hom}(\mathfrak{B}_{\operatorname{cc}},\mathfrak{B}_{\mathcal{L}_a})\simeq\operatorname{CB}_a(\mathcal{C},\hat{\mathfrak{g}}_k)$$

for eigen-space $CB_a(\mathcal{C}, \hat{\mathfrak{g}}_k)$ with eigenvalue *a* of (gen.) Verlinde loop operators associated to \mathcal{L} within $CB(\mathcal{C}, \hat{\mathfrak{g}}_k)$.

Relation to quantisation of character variety $\mathcal{M}_{char}(C)$:

- ▶ Lagrangian \mathcal{L} with coords. $a \rightsquigarrow \text{ comm. subalg. of } \mathcal{A}_{\epsilon_1/\epsilon_2}^{\mathfrak{g}}$,
- $\rightsquigarrow \exists$ Representations $\pi_{\mathcal{L}}$ for S as spaces of functions f(a) on \mathcal{L} ,
- $\rightsquigarrow \exists$ Distributions $\delta_a \in S'$, $a \in \mathcal{L}$, \exists modules $\pi_{\mathcal{L}}(\mathcal{A}^{\mathfrak{g}}_{\epsilon_1/\epsilon_2})\delta_a$.

How to recover ordinary geometric Langlands:

- Fixing half of Darboux coordinates $a \rightsquigarrow$ Lagrangian \mathcal{L}_a
- Riemann-Hilbert \rightsquigarrow point ρ_a in $Op_g(C)$
- WKB analysis: Brane $\mathfrak{B}_a \to \mathfrak{F}_{p_a}$ for $k + h^{\vee} \to 0$.

 \rightsquigarrow Fixing a fiber \mathfrak{F}_{p} .

Warning: Work needed here!

Another road towards quantum geometric Langlands: (math translation)

- ▶ q-𝔅𝔅: Quantum Geometric Langlands
- ► 𝔅𝔅: Kazhdan-Lusztig type equivalence
- ▶ 𝔐𝔅: Modular duality

Features

- Non-algebraic
- But brings back honest harmonic analysis!

Summary

Outline of a picture containing stories of Beilinson-Drinfeld, Kapustin-Witten, Alday-Gaiotto-Tachikawa, and Nekrasov-Witten.

1) Brane \mathcal{B}_x^{WZ} represents the other side of the GL-coin:

- Fixing bundle: $\Delta_k^{WZ}|_x \simeq \operatorname{Hom}(\mathcal{B}_{cc}, \mathcal{B}_x^{WZ})$
- Fixing oper: $\Delta_k^{WZ}|_p \simeq \operatorname{Hom}(\mathcal{B}_{cc}, \mathcal{F}_p)$
- 2) Consideration of Lagrangian branes in ${\mathfrak M}_{\rm char}({\mathcal C})$
 - ► can be used to describe spectral decomposition for Hom(B_{cc}, B_x^{WZ}),
 - ▶ gives chiral partition functions Z(a, x): analog of automorphic forms.

Outtakes

- Hecke action
- Opers to general local systems

Looking forward to seeing you next year....

at String-Math 2017 in Hamburg !

Thomas Wolf, www.foto-tw.de

de.wikipedia.org

