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[Gamayun, lorgov, OL, 1207.0787]

Painlevé VI tau function is a Fourier transform of ¢ = 1 conformal block:

7(t) = Z e B (57 o+n, t) = Z e""n>c_+n<(t)
nez ez ¢ \

© 0

> 4 parameteres § <> external momenta

> 2 integration constants (o,7) <= internal momentum + Fourier
conjugate variable

» isomonodromic deformation of rank N = 2 Fuchsian systems with 4
singular points on P!

[lorgov, OL, Teschner, 1401.6104]

» understood in the framework of Liouville CFT and generalized to an
arbitrary number of punctures (Garnier system)



AGT correspondence

combinatorial sum

. Nek '04
over tuples of partitions [ ekrasov, ‘0 ]

B(t) = Zinst(t) =

Questions :

» understand this combinatorial structure within the theory of monodromy
preserving deformations

> generalize to higher rank/genus/beyond linear quivers

» conformal blocks of Wy beyond semi-degenerate case? Ty theory?



Riemann-Hilbert setup

» contour I on a Riemann surface ©
> jump matrix J : I — GL (N, C)

RHP defined by (I, J) is to find analytic invertible matrix function
V: ¥\I' - GL (N, C) whose boundary values satisfy

\U+ = J\U,



Contour I' for n =5



Jump data

> local exponents: n diagonal non-resonant N x N matrices
Ok = diag {0k,1,...,0kn} (k=1,...,n) satisfying a consistency relation
> Trer=0

> 2n connection matrices G+ € GL (N, C) satisfying the constraints

27O —1 —1
Mik = Cy—e”" " C L = Chy1,— G 4 k=1,...n—2,
27O, —1 —27i® —1
Ml—“’—l = C"—la—e nt n—1,+ = C"’,—e nCn,+a

Mipi=1=Co-Cit=C -Gy,

Jump matrix J

J(2)| =M}, k=1,...,n—1,
Ly
J(z)W:(ak—z)_eka_,jl[, $z20, k=1,...,n—1,
k
_ ©n ~—1 x
J(z)| =(-2)""C, 1, Sz =z 0.
Yn




Fundamental matrix solution

v (z), z outside 1...n,
®(2) = Ce(ak—2)° W (2), zinside v, k=1,...,n—1,
Co(—2)" %"V (z2), z inside .

> only piecewise constant jumps on Rso

> matrix 19, meromorphic on P! with poles only possible at ai, ..., an

> local analysis shows that

0.0 =0A(z), A(z)= Ak

with Ay = V¥ (ak)fl oV (ak)



Monodromy representation p : m1 (P*\a) — GL (N, C) generated by

M =p (&) = M1 "Mk
Assume that all My, = My ... My are diagonalizable,

27iS —1 .
Mlﬁk:Ske kSk s Gk:dlag{akyl,...,ak,,\,}.



Aucxiliary 3-point RHPs

- —_—— .

> we are going to associate to the n-point RHP n — 2 3-point RHPs
assigned to different trinions



Contour ¥ (left) and [ for n = 5 (right)

> jumps on the boundary circles C*%, C;" mimic regular singularities
characterized by counterclockwise monodromies M;_,



Cauchy-Plemelj operators

>

associate to every trinion Ty with k =2,... n — 3 the spaces of
vector-valued functions

W- @ (Hlent),  HL-cVev. )

e=in,out

elements I € HIX will be written as

[£] [K]
f-[k] _ fin,— ® fin,+
£lA £k ’
out,+ out,—

define an operator P : 1K 5 214 by

2w z—Zz

k k Nl ’
,P[k]f[k] (z) _ i 7{ \U[Jr] (z) W[Jr] (z ) Ik (z )dZ/
cinucout



out,—

2
Lemma. We have (P[k]) =P and ker PH = 7-[!‘;]74r & H¥, . Moreover,

PH can be explicitly written as

P ( fin- ) @< fis ) ( fin- ) @< all bl >( fin )
s Y e |
k k ’
fott font- fot o d

where the operators al¥l, bl c[¥ dIl are defined by

() @) = . [V @V ()7 1] EELE L zecp,
cin

2mi z—2z

~1g () d?

1 Wik () wlk (o cin
-ﬁﬁut 1 (2) +(Z) 72— zely,

(M) (2) =5 § W@l () TEELE, zeop,
cin

27 z—2Zz

[ _ 1 [k KN~ ,]8(2)dZ out
(d g (Z)_Zwiﬁruc [W+ (z2) Vi (Z) 1] S _ zeCm.



introduce the total space

H = @92 HH,
k=1

there is a splitting
H=H  DH_,

oHl ) o ..o (M eul) e ul 2.

Hy = HLll]lt,i ® (Hi[i],q:
combine the 3-point projections P into an operator Pg : H — H given
by the direct sum

Pe=Ple. . . op3

similarly, define another projection Ps : H — H by

2mi z—Zz

L@ e T
Pef(e) = g f THERHELIEE o (Jortuaa
T k=1



> it is easy to show that PsPg = Pg and PgaPs=Px

> the space

7'[7* = im P@ =im P):.
can be thought of as the subspace of functions on the union of boundary
circles C{*, C2"* that can be continued inside Uz;f T with monodromy

and singular behavior of the n-point fundamental matrix solution ¢ (z)

varying the positions of singular points, one obtains a trajectory of Hy in
the infinite-dimensional Grassmannian Gr (#) defined with respect to the
splitting H =H, ® H_

each of the subspaces H+ may be identified with N (n — 3) copies of the
space L* (S') of functions on a circle; the factor n — 3 corresponds to the
number of annuli and N is the rank of the appropriate RHP



> introduce operators Pg + : Hy — H7 and Ps ;. : Hy — Hy given by
restrictions of Pg and Px to H

> define L € End () defined by
L = P@,+71Pz,+

> there exists a basis in which L™ =1 — K, with

Us Vi 0 . 0 gl

Wy Uz W . 0 & [K]
K= 0 W, U . : , 8= : » Bk = < B

. . . . Vn_4 : in,—

0 0 . W,,74 U,,,3 g—n73

0 a[k+1] b[k+1] 0 0 0
Uk:(d[k] 0 )7Vk:( 0 0)7Wk:(0 C[k+1])



Definition

The tau function associated to the Riemann-Hilbert problem for W is defined as

7(a) :=det (L)

Theorem

We have
T (a) =7 (a)_lTJMU (a) N

where Tyvu (a) is defined up to a prefactor independent of a by

daInTymu = Z TrAA dIn(ak — ar),

1<k<I<n—1

and T (a) = [[}=2 ap* 7% with A, = 1 Tr02, Ay = 1 Tr &2




Example (n = 4)
T () = t2 TH(8%-08-0%) get (1-U),
with

u:(g S)GEnd(Hc)

where the operators a = al?l : N_H¢ — N He and d = dM : Mo He — N_He
are given by

R uR () 1

)

(ag) (z) = %ii a(z,2)g () d, a(z,2)

_ it () gl ()7
(dg)(z):%id(z,z/)g(z')dz', d(z,z/):1 v iz\lzl, (Z) .



Fourier basis

Let us represent the elements of H¢ by their Laurent series inside A,

1
_1 N
z 2P, fFeC”,

and write integral kernels of 3-point projection operators al¥l, blKl, ¢l dIdl 55

\U[k] (2) \U[k] (Zl)_l

a[k] (Z’ Z,) = - zi z/

bkl (z, z’) =

z—2z

M (z,7

SN—r
li

z—Zz

d (z,2') =

W)t
v (2wl ()

1- vl ) ull ()

z—2z

/ in
z,z € C/,

Kl p,—3+p /—3+q
E alfz P e

’
P,qEZl,

S pHE Ry s e

P,qEL],

X 1 1 .
§ C[] P,=32 PZ/ +q7Z€C;3Ut,ZIEC;<n

—q
P,qEZL,

K—p —2—p_r—21_ t
E d[]pqzzpz'zq7 z,7 e Cp™.

PyqEZLY,



Von Koch’s formula

Let A € C**¥ be a matrix indexed by a discrete and possibly infinite set X.
The basic tool for expanding 7 (a) is the formula

det(1+ A) = Z det Ay,

Pe2*

where det Ay denotes the |9)| x |2)| principal minor obtained by restriction of A
to a subset 9 C X.

In our case : Ais K in the Fourier basis. Elements of X are multi-indices which
encode the following data:

> positions of the blocks al!l, biH, ¥ dK in K
> a half-integer Fourier index of the appropriate block;
> a color index in {1,..., N}.

Combine Fourier and color indices into one multi-index
1= (p,a) €N =7 x {1,...,N}

Unordered sets {t1,...,tm} € 2% of such multi-indices are denoted by I or J.
Given M € C™*™, we denote by M7 its restriction to rows / and columns J.



Principal minor

0 (a[z])’Jl (b[z])lll o o . ‘ . .
1 2
(at) 0 0 0 o , ‘ . .
1
U A : :
2 3
G I .
0 o 0 0 o
0 0 0 (cm)js (d[s])le
2 3
n— In—
(b[ 3]):n,: o
0 0
0 0 0 0 0 0 (a[n—z])’Jn—3
n—3
T e e
> vanishes unless balance condition |lx| = |Jk| is satisfied

» factorization into a product of elementary determinants

(a[k])lk—l (b[k])lk—l
Jk—1 Ik

@ );
Jk—1 Ik

Z’IILTJlkak—l (T[k]) = (_1)|’k\ det




Corollary: Fredholm determinant 7 (a) is given by

n—2
r@= Y IIzi ()

(r,Jﬁ)ECoanr k=1

» The set Conf of proper balanced configurations (F, f) may be described
in terms of Maya diagrams and charged partitions

> A Maya diagram is a map m : Z' — {—1,1} subject to the condition
m (p) = £1 for all but finitely many p € Z’. (positions of particles and
holes)

> charge(m) = f#(particles) — f(holes)

> balanced configurations (/k, J«) are in one-to-one correspondence with
N-tuples of Maya diagrams of zero total charge



> here the charge Q (m) = 2 and the positions of particles and holes are
given by p(m) = (3,7,3,3) and h(m) = (-3, -3)

> MY = Y" x Qn, where Qy denotes the Ay_; root lattice:
R N
= zN ‘ (@ — }
av={Gez" |3 Q@9 =0
Alternative combinatorial notation :

2% G (TH) = Zhhes (71),

Vi, Gk



Theorem

Fredholm determinant 7 (a) can be written as a combinatorial series

n—2 - N
HORSED DEEED DI I £ Sl ()

Q1,...Gp_3€y V1,...Y,_3eYN k=1

Vi 1an 1

> elementary determinants Z are constructed from matrix

k k
elements of 3-point Plemelj operators in Fourier basis

» in rank N = 2, they are given by Cauchy matrices conjugated by diagonal
factors = explicitly computable !

> the result coincides with dual Nekrasov partition function for U (2) linear
quiver gauge theory with €1 + €2 =0

» rank N = a sum of N — 1 Cauchy matrices
(unless additional spectral conditions are imposed)



Example

Complete expansion of Painlevé VI tau function at t = 0 is given by

T(t) = Z e"MZ(0,0 + n; t),

n€Z

The function Z(Gﬂ7 o; t) is explicitly given by

o 2_p2_p2 -
Z (0,0; t) = Ng;,aNgfgotg 05 —0% (1 _ t)29t91 Z Zau (9,0) tMH—‘M,

A\, ueY

Zxu (67,0) = II (Oct+o+i—J—08) (Brto+i—j—0%)

(i.J)EA h3(i.J) (>\J/-—i+/xi—j+1+2a)2
[ ot iR ) (G ko2 )
()en B2(i,4) (1 — i+ X\ —j+1-20) ’

He::t G (1 + 63 + 6(91 + 92)) G (1 — 03+ 6(91 — 92))

Ng2 o, =
93,01 G(1—261)G(1 —262)G(1 + 265)




Conclusions

1.

Isomonodromic tau functions of Fuchsian systems can be written as block
Fredholm determinants whose kernels are built of fundamental solutions
of 3-point Fuchsian systems

Expanding these determinants in Fourier basis leads to combinatorial
series over tuples over tuples of partitions

The coefficients of the series can be computed explicitly when 3-point
solutions have hypergeometric representations (in particular for N = 2)



