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[Gamayun, Iorgov, OL, 1207.0787]

Painlevé VI tau function is a Fourier transform of c = 1 conformal block:
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∑
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I 4 parameteres ~θ ⇐⇒ external momenta
I 2 integration constants (σ, η) ⇐⇒ internal momentum + Fourier

conjugate variable
I isomonodromic deformation of rank N = 2 Fuchsian systems with 4

singular points on P1

[Iorgov, OL, Teschner, 1401.6104]

I understood in the framework of Liouville CFT and generalized to an
arbitrary number of punctures (Garnier system)



AGT correspondence

B(t) = Zinst(t) =
combinatorial sum

over tuples of partitions [Nekrasov, ’04]

Questions :
I understand this combinatorial structure within the theory of monodromy

preserving deformations
I generalize to higher rank/genus/beyond linear quivers
I conformal blocks of WN beyond semi-degenerate case? TN theory?



Riemann-Hilbert setup

I contour Γ on a Riemann surface Σ

I jump matrix J : Γ→ GL (N,C)
+ -

RHP defined by (Γ, J) is to find analytic invertible matrix function
Ψ : Σ\Γ→ GL (N,C) whose boundary values satisfy

Ψ+ = JΨ−
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Contour Γ for n = 5



Jump data
I local exponents: n diagonal non-resonant N × N matrices

Θk = diag {θk,1, . . . , θk,N} (k = 1, . . . , n) satisfying a consistency relation∑n
k=1 TrΘk = 0

I 2n connection matrices Ck,± ∈ GL (N,C) satisfying the constraints

M1→k := Ck,−e
2πiΘkC−1

k,+ = Ck+1,−C
−1
k+1,+, k = 1, . . . n − 2,

M1→n−1 := Cn−1,−e
2πiΘn−1C−1

n−1,+ = Cn,−e
−2πiΘnC−1

n,+,

M1→n := 1 = Cn,−C
−1
n,+ = C1,−C

−1
1,+,

Jump matrix J

J (z)
∣∣∣
`k

= M −1
1→k , k = 1, . . . , n − 1,

J (z)
∣∣∣
γk

= (ak − z)−Θk C−1
k,±, =z ≷ 0, k = 1, . . . , n − 1,

J (z)
∣∣∣
γn

= (−z)Θn C−1
n,±, =z ≷ 0.



Fundamental matrix solution

Φ (z) =


Ψ (z) , z outside γ1...n,

Ck (ak − z)Θk Ψ (z) , z inside γk , k = 1, . . . , n − 1,
Cn (−z)−Θn Ψ (z) , z inside γn.

I only piecewise constant jumps on R>0

I matrix Φ−1∂zΦ meromorphic on P1 with poles only possible at a1, . . . , an

I local analysis shows that

∂zΦ = ΦA (z) , A (z) =
n∑

k=1

Ak

z − ak

with Ak = Ψ (ak)−1 ΘkΨ (ak)
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Monodromy representation ρ : π1
(
P1\a

)
→ GL (N,C) generated by

Mk = ρ (ξk) = M1→k−1
−1M1→k

Assume that all M1→k = M1 . . .Mk are diagonalizable,

M1→k = Ske
2πiSkS−1

k , Sk = diag {σk,1, . . . , σk,N} .



Auxiliary 3-point RHPs
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I we are going to associate to the n-point RHP n − 2 3-point RHPs
assigned to different trinions
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Contour Γ[k] (left) and Γ̂ for n = 5 (right)

I jumps on the boundary circles Cout
k−1, C in

k mimic regular singularities
characterized by counterclockwise monodromies M1→k



Cauchy-Plemelj operators

I associate to every trinion Tk with k = 2, . . . , n − 3 the spaces of
vector-valued functions

H[k] =
⊕

ε=in,out

(
H[k]
ε,+ ⊕H

[k]
ε,−

)
, H[k]

ε,± = CN ⊗ V± (Cεk) .

I elements f [k] ∈ H[k] will be written as

f [k] =

(
f

[k]
in,−

f
[k]
out,+

)
⊕

(
f

[k]
in,+

f
[k]
out,−

)
.

I define an operator P [k] : H[k] → H[k] by

P [k]f [k] (z) =
1
2πi

∮
Cin
k
∪Cout

k

Ψ
[k]
+ (z) Ψ

[k]
+ (z ′)

−1
f [k] (z ′) dz ′

z − z ′



Lemma. We have
(
P [k]

)2
= P [k] and kerP [k] = H[k]

in,+ ⊕H
[k]
out,−. Moreover,

P [k] can be explicitly written as

P [k] :

(
f

[k]
in,−

f
[k]
out,+

)
⊕

(
f

[k]
in,+

f
[k]
out,−

)
7→

(
f

[k]
in,−

f
[k]
out,+

)
⊕

(
a[k] b[k]

c[k] d[k]

)(
f

[k]
in,−

f
[k]
out,+

)
,

where the operators a[k], b[k], c[k], d[k] are defined by(
a[k]g

)
(z) =

1
2πi

∮
Cin
k

[
Ψ

[k]
+ (z) Ψ

[k]
+

(
z ′
)−1
− 1

] g (z ′) dz ′

z − z ′
, z ∈ Cink ,(

b[k]g
)

(z) =
1
2πi

∮
Cout
k

Ψ
[k]
+ (z) Ψ

[k]
+

(
z ′
)−1 g (z ′) dz ′

z − z ′
, z ∈ Cink ,(

c[k]g
)

(z) =
1
2πi

∮
Cin
k

Ψ
[k]
+ (z) Ψ

[k]
+

(
z ′
)−1 g (z ′) dz ′

z − z ′
, z ∈ Cout

k ,

(
d[k]g

)
(z) =

1
2πi

∮
Cout
k

[
Ψ

[k]
+ (z) Ψ

[k]
+

(
z ′
)−1
− 1

] g (z ′) dz ′

z − z ′
, z ∈ Cout

k .



I introduce the total space

H :=
n−2⊕
k=1

H[k].

I there is a splitting

H = H+ ⊕H−,

H± := H[1]
out,± ⊕

(
H[2]

in,∓ ⊕H
[2]
out,±

)
⊕ . . .⊕

(
H[n−3]

in,∓ ⊕H
[n−3]
out,±

)
⊕H[n−2]

in,∓ .

I combine the 3-point projections P [k] into an operator P⊕ : H → H given
by the direct sum

P⊕ = P [1] ⊕ . . .⊕ P [n−2].

I similarly, define another projection PΣ : H → H by

PΣf (z) =
1
2πi

∮
CΣ

Ψ̂+ (z) Ψ̂+ (z ′)
−1

f (z ′) dz ′

z − z ′
, CΣ :=

n−3⋃
k=1

Cout
k ∪ Cink+1.



I it is easy to show that PΣP⊕ = P⊕ and P⊕PΣ=PΣ

I the space
HT := imP⊕ = imPΣ.

can be thought of as the subspace of functions on the union of boundary
circles Cink , Cout

k that can be continued inside
⋃n−2

k=1 Tk with monodromy
and singular behavior of the n-point fundamental matrix solution Φ (z)

I varying the positions of singular points, one obtains a trajectory of HT in
the infinite-dimensional Grassmannian Gr (H) defined with respect to the
splitting H = H+ ⊕H−

I each of the subspaces H± may be identified with N (n − 3) copies of the
space L2 (S1) of functions on a circle; the factor n− 3 corresponds to the
number of annuli and N is the rank of the appropriate RHP



I introduce operators P⊕,+ : H+ → HT and PΣ,+ : H+ → HT given by
restrictions of P⊕ and PΣ to H+

I define L ∈ End (H+) defined by

L := P⊕,+−1PΣ,+

I there exists a basis in which L−1 = 1− K , with

K =


U1 V1 0 . 0
W1 U2 V2 . 0
0 W2 U3 . .
. . . . Vn−4

0 0 . Wn−4 Un−3

 , ~g =


g̃1

g̃2
...

g̃n−3

 , g̃k =

(
g

[k]
out,+

g
[k+1]
in,−

)
,

Uk =

(
0 a[k+1]

d[k] 0

)
, Vk =

(
b[k+1] 0
0 0

)
, Wk =

(
0 0
0 c[k+1]

)



Definition
The tau function associated to the Riemann-Hilbert problem for Ψ is defined as

τ (a) := det
(
L−1)

Theorem
We have

τ (a) = Υ (a)−1τJMU (a) ,

where τJMU (a) is defined up to a prefactor independent of a by

da ln τJMU =
∑

1≤k<l≤n−1

TrAkAl d ln (ak − al) ,

and Υ (a) =
∏n−2

k=2 a
∆̄k−∆̄k−1−∆k

k , with ∆k = 1
2 TrΘ2

k , ∆̄k = 1
2 TrS

2
k



Example (n = 4)

τJMU (t) = t
1
2 Tr(S2−Θ2

0−Θ2
t ) det (1− U) ,

with

t0 1

( )t-z Ct,-

-1-Qt

( )t-z +Ct,

-1-Qt (1 )-z C1,+

-1-Q1

(1 )-z C1,-

-1-Q1

( )-z C0

-1
( )   C-z

-Q0-1

8

Q 8

( )-z
-s

( )-z
-s

M0

-1
M 8e

-2 ip s
e

-2 ip s

U =

(
0 a
d 0

)
∈ End (HC)

where the operators a ≡ a[2] : Π−HC → Π+HC and d ≡ d[1] : Π+HC → Π−HC
are given by

(ag) (z) =
1
2πi

∮
C
a
(
z , z ′

)
g
(
z ′
)
dz ′ , a

(
z , z ′

)
=

Ψ[R] (z) Ψ[R] (z ′)
−1 − 1

z − z ′
,

(dg) (z) =
1
2πi

∮
C
d
(
z , z ′

)
g
(
z ′
)
dz ′ , d

(
z , z ′

)
=

1−Ψ[L] (z) Ψ[L] (z ′)
−1

z − z ′
.



Fourier basis

Let us represent the elements of HC by their Laurent series inside A,

f (z) =
∑
p∈Z′

f pz−
1
2 +p, f p ∈ CN ,

and write integral kernels of 3-point projection operators a[k], b[k], c[k], d[k] as

a[k] (z , z ′) :=
Ψ

[k]
+ (z) Ψ

[k]
+ (z ′)

−1
− 1

z − z ′
=
∑

p,q∈Z′+

a[k] p
−q z−

1
2 +pz ′−

1
2 +q, z , z ′ ∈ Cink ,

b[k] (z , z ′) := −
Ψ

[k]
+ (z) Ψ

[k]
+ (z ′)

−1

z − z ′
=
∑

p,q∈Z′+

b[k]p
q z
− 1

2 +pz ′
− 1

2−q
, z ∈ Cink , z ′ ∈ Cout

k

c[k] (z , z ′) :=
Ψ

[k]
+ (z) Ψ

[k]
+ (z ′)

−1

z − z ′
=
∑

p,q∈Z′+

c[k]−p
−q z

− 1
2−pz ′−

1
2 +q, z ∈ Cout

k , z ′ ∈ Cink

d[k] (z , z ′) :=
1−Ψ

[k]
+ (z) Ψ

[k]
+ (z ′)

−1

z − z ′
=
∑

p,q∈Z′+

d[k]−p
qz
− 1

2−pz ′−
1
2−q, z , z ′ ∈ Cout

k .



Von Koch’s formula

Let A ∈ CX×X be a matrix indexed by a discrete and possibly infinite set X.
The basic tool for expanding τ (a) is the formula

det (1 + A) =
∑

Y∈2X

detAY,

where detAY denotes the |Y| × |Y| principal minor obtained by restriction of A
to a subset Y ⊆ X.

In our case : A is K in the Fourier basis. Elements of X are multi-indices which
encode the following data:

I positions of the blocks a[k], b[k], c[k], d[k] in K

I a half-integer Fourier index of the appropriate block;
I a color index in {1, . . . ,N}.

Combine Fourier and color indices into one multi-index

ı = (p, α) ∈ N := Z′ × {1, . . . ,N}

Unordered sets {ı1, . . . , ım} ∈ 2N of such multi-indices are denoted by I or J.
Given M ∈ CN×N, we denote by MJ

I its restriction to rows I and columns J.



Principal minor


0
(
a[2]
)I1
J1

(
b[2]
)I1
I2

0 0 · · 0 0(
d[1]
)J1
I1

0 0 0 0 · · 0 0

0 0 0
(
a[3]
)I2
J2

(
b[3]
)I2
I3

· · 0 0

0
(
c[2]
)J2
J1

(
d[2]
)J2
I2

0 0 · · 0 0

0 0 0 0 0 · · · ·
0 0 0

(
c[3]
)J3
J2

(
d[3]
)J3
I3

· · · ·

· · · · · · ·
(
b[n−3]

)In−2
In−3

0

· · · · ·· · 0 0

0 0 0 0 · · 0 0
(
a[n−2]

)In−3
Jn−3

0 0 0 0 · ·
(
c[n−3]

)Jn−3
Jn−4

(
d[n−3]

)Jn−3
In−3

0


I vanishes unless balance condition |Ik | = |Jk | is satisfied
I factorization into a product of elementary determinants

Z
Ik−1,Jk−1
Ik ,Jk

(
T [k]

)
:= (−1)|Ik | det


(
a[k]
)Ik−1

Jk−1

(
b[k]
)Ik−1

Ik(
c[k]
)Jk
Jk−1

(
d[k]
)Jk
Ik





Corollary: Fredholm determinant τ (a) is given by

τ (a) =
∑

(~I ,~J)∈Conf+

n−2∏
k=1

Z
Ik−1,Jk−1
Ik ,Jk

(
T [k]

)

I The set Conf+ of proper balanced configurations
(
~I , ~J
)
may be described

in terms of Maya diagrams and charged partitions
I A Maya diagram is a map m : Z′ → {−1, 1} subject to the condition

m (p) = ±1 for all but finitely many p ∈ Z′± (positions of particles and
holes)

I charge(m) = ](particles) − ](holes)
I balanced configurations (Ik , Jk) are in one-to-one correspondence with

N-tuples of Maya diagrams of zero total charge
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I here the charge Q (m) = 2 and the positions of particles and holes are
given by p (m) =

( 13
2 ,

7
2 ,

3
2 ,

1
2

)
and h (m) =

(
− 5

2 ,−
1
2

)
I MN

0
∼= YN ×QN , where QN denotes the AN−1 root lattice:

QN :=
{
~Q ∈ ZN

∣∣∣∑N

α=1
Q(α) = 0

}
.

Alternative combinatorial notation :

Z
~Yk−1,~Qk−1
~Yk ,~Qk

(
T [k]

)
:= Z

Ik−1,Jk−1
Ik ,Jk

(
T [k]

)
,



Theorem
Fredholm determinant τ (a) can be written as a combinatorial series

τ (a) =
∑

~Q1,...~Qn−3∈QN

∑
~Y1,...~Yn−3∈YN

n−2∏
k=1

Z
~Yk−1,~Qk−1
~Yk ,~Qk

(
T [k]

)

I elementary determinants Z
~Yk−1,~Qk−1
~Yk ,~Qk

are constructed from matrix
elements of 3-point Plemelj operators in Fourier basis

I in rank N = 2, they are given by Cauchy matrices conjugated by diagonal
factors ⇒ explicitly computable !!!

I the result coincides with dual Nekrasov partition function for U (2) linear
quiver gauge theory with ε1 + ε2 = 0

I rank N ⇒ a sum of N − 1 Cauchy matrices
(unless additional spectral conditions are imposed)



Example
Complete expansion of Painlevé VI tau function at t = 0 is given by

τ(t) =
∑
n∈Z

e inηZ(~θ, σ + n; t),

The function Z(~θ, σ; t) is explicitly given by

Z
(
~θ, σ; t

)
= Nθ1θ∞,σN

θt
σ,θ0

tσ
2−θ20−θ

2
t (1− t)2θtθ1

∑
λ,µ∈Y

Zλ,µ
(
~θ, σ
)
t|λ|+|µ|,

Zλ,µ
(
~θ, σ
)

=
∏

(i,j)∈λ

(
(θt + σ + i − j)2 − θ2

0
) (

(θ1 + σ + i − j)2 − θ2
∞
)

h2
λ(i , j)

(
λ′j − i + µi − j + 1 + 2σ

)2 ×

×
∏

(i,j)∈µ

(
(θt − σ + i − j)2 − θ2

0
) (

(θ1 − σ + i − j)2 − θ2
∞
)

h2
µ(i , j)

(
µ′j − i + λi − j + 1− 2σ

)2 ,

Nθ2θ3,θ1 =

∏
ε=± G (1 + θ3 + ε(θ1 + θ2))G (1− θ3 + ε(θ1 − θ2))

G(1− 2θ1)G(1− 2θ2)G(1 + 2θ3)
.



Conclusions

1. Isomonodromic tau functions of Fuchsian systems can be written as block
Fredholm determinants whose kernels are built of fundamental solutions
of 3-point Fuchsian systems

2. Expanding these determinants in Fourier basis leads to combinatorial
series over tuples over tuples of partitions

3. The coefficients of the series can be computed explicitly when 3-point
solutions have hypergeometric representations (in particular for N = 2)


