Elliptically fibered Calabi-Yau threefolds: mirror symmetry and Jacobi forms

Sheldon Katz

University of Illinois at Urbana-Champaign

String-Math 2016 SK, A. Klemm, and M. Huang arXiv:1501.04891 and work in progress

Sheldon Katz Elliptically fibered Calabi-Yau threefolds: mirror symmetry and Jac

• $\pi: X \to \mathbf{P}^2$ elliptically fibered Calabi-Yau threefold

• $X = X_{18} \rightarrow X_{18} \subset \mathbf{P}(1, 1, 1, 6, 9)$, blowup $x_1 = x_2 = x_3 = 0$, Candelas, Font, K, Morrison hep-th/9403187

•
$$\pi(x_1,\ldots,x_5) = (x_1,x_2,x_3)$$

- $\ell \subset \mathbf{P}^2$ line, $L = \pi^* \ell$, $E \subset X$ exc. div., a section of π
- Kähler cone generated by $\{H = E + 3L, L\}$
- Dual generators of Mori cone {*f*, *ℓ*}, where *ℓ* ⊂ *E* ≃ **P**² and *f* elliptic fiber

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

- $\pi: X \to \mathbf{P}^2$ elliptically fibered Calabi-Yau threefold
- $X = X_{18} \rightarrow X_{18} \subset \mathbf{P}(1, 1, 1, 6, 9)$, blowup $x_1 = x_2 = x_3 = 0$, Candelas, Font, K, Morrison hep-th/9403187

•
$$\pi(x_1,...,x_5) = (x_1,x_2,x_3)$$

- $\ell \subset \mathbf{P}^2$ line, $L = \pi^* \ell$, $E \subset X$ exc. div., a section of π
- Kähler cone generated by $\{H = E + 3L, L\}$
- Dual generators of Mori cone {*f*, *ℓ*}, where *ℓ* ⊂ *E* ≃ **P**² and *f* elliptic fiber

(ロ) (同) (三) (三) (三) (○)

- $\pi: X \to \mathbf{P}^2$ elliptically fibered Calabi-Yau threefold
- $X = X_{18} \rightarrow X_{18} \subset \mathbf{P}(1, 1, 1, 6, 9)$, blowup $x_1 = x_2 = x_3 = 0$, Candelas, Font, K, Morrison hep-th/9403187

•
$$\pi(x_1,...,x_5) = (x_1,x_2,x_3)$$

- $\ell \subset \mathbf{P}^2$ line, $L = \pi^* \ell$, $E \subset X$ exc. div., a section of π
- Kähler cone generated by $\{H = E + 3L, L\}$
- Dual generators of Mori cone {*f*, *ℓ*}, where *ℓ* ⊂ *E* ≃ **P**² and *f* elliptic fiber

- $\pi: X \to \mathbf{P}^2$ elliptically fibered Calabi-Yau threefold
- $X = X_{18} \rightarrow X_{18} \subset \mathbf{P}(1, 1, 1, 6, 9)$, blowup $x_1 = x_2 = x_3 = 0$, Candelas, Font, K, Morrison hep-th/9403187

•
$$\pi(x_1, \ldots, x_5) = (x_1, x_2, x_3)$$

- $\ell \subset \mathbf{P}^2$ line, $L = \pi^* \ell$, $E \subset X$ exc. div., a section of π
- Kähler cone generated by $\{H = E + 3L, L\}$
- Dual generators of Mori cone {*f*, *ℓ*}, where *ℓ* ⊂ *E* ≃ **P**² and *f* elliptic fiber

The Mirror Geometry

•
$$X^{\circ} \subset \mathbf{P}(1, 1, 1, 6, 9)/G$$
,

$$x_1^{18} + x_2^{18} + x_3^{18} - 18\psi x_1 x_2 x_3 x_4 x_5 - 3\phi x_1^6 x_2^6 x_3^6 = 0$$

Additional symmetries:

•
$$(\psi, \phi) \mapsto (\zeta \psi, \zeta^6 \phi), \ \zeta = \exp(2\pi i/18)$$

•
$$I: (\rho, \phi) \mapsto (i\rho, \phi + \rho^6), \ \rho := (2 \cdot 3^4)^{1/3} \psi, \ I^*(\Omega) = -\Omega$$

- Invariant coordinates at large complex structure (maximal unipotent monodromy) (s₁, s₂) = (φψ⁻⁶, φ⁻³)
- Become (q, Q) = (exp(2πiτ), exp(2πit)) in flat coordinates after mirror map

くロト (過) (目) (日)

The Mirror Geometry

•
$$X^{\circ} \subset \mathbf{P}(1, 1, 1, 6, 9)/G,$$

 $x_1^{18} + x_2^{18} + x_3^{18} - 18\psi x_1 x_2 x_3 x_4 x_5 - 3\phi x_1^6 x_2^6 x_3^6 = 0$

Additional symmetries:

•
$$(\psi, \phi) \mapsto (\zeta \psi, \zeta^6 \phi), \ \zeta = \exp(2\pi i/18)$$

•
$$I: (\rho, \phi) \mapsto (i\rho, \phi + \rho^6), \ \rho := (2 \cdot 3^4)^{1/3} \psi, \ I^*(\Omega) = -\Omega$$

- Invariant coordinates at large complex structure (maximal unipotent monodromy) (s₁, s₂) = (φψ⁻⁶, φ⁻³)
- Become (q, Q) = (exp(2πiτ), exp(2πit)) in flat coordinates after mirror map

ヘロト 人間 ト ヘヨト ヘヨト

The Mirror Geometry

$$x_1^{18} + x_2^{18} + x_3^{18} - 18\psi x_1 x_2 x_3 x_4 x_5 - 3\phi x_1^6 x_2^6 x_3^6 = 0$$

Additional symmetries:

•
$$(\psi, \phi) \mapsto (\zeta \psi, \zeta^6 \phi), \ \zeta = \exp(2\pi i/18)$$

•
$$I: (\rho, \phi) \mapsto (i\rho, \phi + \rho^6), \ \rho := (2 \cdot 3^4)^{1/3} \psi, \ I^*(\Omega) = -\Omega$$

- Invariant coordinates at large complex structure (maximal unipotent monodromy) (s₁, s₂) = (φψ⁻⁶, φ⁻³)
- Become $(q, \tilde{Q}) = (\exp(2\pi i \tau), \exp(2\pi i \tilde{t}))$ in flat coordinates after mirror map

(雪) (ヨ) (ヨ)

- From periods observe an $SL(2, \mathbb{Z})$ action on a divisor with equation $Q = q^{3/2}\tilde{Q} = 0$, S(Q) = -Q, T(Q) = -Q
- So we shift coordinates to see modularity
- For later use, note that Q satisfies the same multiplier system as η^{12}

$$\eta^{12}(\tau+1) = \eta^{12}\left(-\frac{1}{\tau}\right) = -\eta^{12}(\tau)$$

(雪) (ヨ) (ヨ)

• T := H + (3/2)L, work in basis $\{T, L\}$

•
$$\omega = \tau T + tL = \tau H + (t + (3/2)\tau)L$$

- Will explain this shift directly using homological mirror symmetry
- Topological string partition function $Z = Z(t, \tau, \lambda)$ (GW, PT,DT)

•
$$q = \exp(2\pi i \tau), \ Q = \exp(2\pi i t), \lambda = 2\pi z$$

$$Z = Z_0(\tau, z) \left(1 + \sum_{d=1}^{\infty} Z_d(\tau, z) Q^d \right),$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

- T := H + (3/2)L, work in basis $\{T, L\}$
- $\omega = \tau T + tL = \tau H + (t + (3/2)\tau)L$
- Will explain this shift directly using homological mirror symmetry
- Topological string partition function $Z = Z(t, \tau, \lambda)$ (GW, PT,DT)

•
$$q = \exp(2\pi i \tau), \ Q = \exp(2\pi i t), \lambda = 2\pi z$$

$$Z = Z_0(\tau, z) \left(1 + \sum_{d=1}^{\infty} Z_d(\tau, z) Q^d \right),$$

(ロ) (同) (三) (三) (三) (○)

- T := H + (3/2)L, work in basis $\{T, L\}$
- $\omega = \tau T + tL = \tau H + (t + (3/2)\tau)L$
- Will explain this shift directly using homological mirror symmetry
- Topological string partition function $Z = Z(t, \tau, \lambda)$ (GW, PT,DT)
- $q = \exp(2\pi i \tau), \ Q = \exp(2\pi i t), \lambda = 2\pi z$

$$Z = Z_0(\tau, z) \left(1 + \sum_{d=1}^{\infty} Z_d(\tau, z) Q^d \right),$$

- T := H + (3/2)L, work in basis $\{T, L\}$
- $\omega = \tau T + tL = \tau H + (t + (3/2)\tau)L$
- Will explain this shift directly using homological mirror symmetry
- Topological string partition function $Z = Z(t, \tau, \lambda)$ (GW, PT,DT)

•
$$q = \exp(2\pi i \tau), \ Q = \exp(2\pi i t), \lambda = 2\pi z$$

$$Z = Z_0(\tau, z) \left(1 + \sum_{d=1}^{\infty} Z_d(\tau, z) Q^d \right),$$

(ロ) (同) (三) (三) (三) (○)

The Main Claim

•
$$Z = Z_0(\tau, z) \left(1 + \sum_{d=1}^{\infty} Z_d(\tau, z) Q^d \right)$$

• $Z_d(\tau, z)$ is a weak Jacobi form of weight zero and index d(d-3)/2 with multipliers

$$Z_{d} = \frac{\phi_{d}(\tau, Z)}{\eta(\tau)^{36d} \prod_{k=1}^{d} \phi_{-2,1}(\tau, kZ)}$$

where $\phi_d(\tau, z)$ is a weak Jacobi form of weight 16*d* and index (1/3)d(d-1)(d+4)

ヘロト 人間 とくほとく ほとう

E DQC

The Main Claim

0

- $Z = Z_0(\tau, z) \left(1 + \sum_{d=1}^{\infty} Z_d(\tau, z) Q^d\right)$
- $Z_d(\tau, z)$ is a weak Jacobi form of weight zero and index d(d-3)/2 with multipliers

$$Z_d = \frac{\phi_d(\tau, Z)}{\eta(\tau)^{36d} \prod_{k=1}^d \phi_{-2,1}(\tau, kZ)},$$

where $\phi_d(\tau, z)$ is a weak Jacobi form of weight 16*d* and index (1/3)d(d-1)(d+4)

(ロ) (同) (三) (三) (三) (○)

Appearence of Jacobi forms in related situations

- Elliptic genus of E-strings Haghighat, Lockhart, Vafa 1406.0850; Kim, Kim, Lee, Park, Vafa 1411.2324; Cai, Huang, Sun 1411.2801
- 6D SCFT Haghighat, Klemm, Lockhart, Vafa, 1412.3152
- $E_2 \mapsto \widehat{E_2} = E_2 3/(\pi \tau_2)$ sends $Z \mapsto \mathfrak{Z}$. Jacobi form ansatz implies \mathfrak{Z} automatically satisfies modular anomaly equation from Alim, Scheidegger, Yau, Zhou 1205.1784, 1306.0002
- We can now *derive* the modular anomaly equation directly from the wave function version of the holomorphic anomaly equation Bershadsky, Cecotti, Ooguri, Vafa hep-th/9302103, Witten hep-th/9306122

ヘロア 人間 アメヨア 人口 ア

- Appearence of Jacobi forms in related situations
 - Elliptic genus of E-strings Haghighat, Lockhart, Vafa 1406.0850; Kim, Kim, Lee, Park, Vafa 1411.2324; Cai, Huang, Sun 1411.2801
 - 6D SCFT Haghighat, Klemm, Lockhart, Vafa, 1412.3152
- $E_2 \mapsto \widehat{E_2} = E_2 3/(\pi \tau_2)$ sends $Z \mapsto \mathfrak{Z}$. Jacobi form ansatz implies \mathfrak{Z} automatically satisfies modular anomaly equation from Alim, Scheidegger, Yau, Zhou 1205.1784, 1306.0002
- We can now *derive* the modular anomaly equation directly from the wave function version of the holomorphic anomaly equation Bershadsky, Cecotti, Ooguri, Vafa hep-th/9302103, Witten hep-th/9306122

・ロット (雪) () () () ()

- Appearence of Jacobi forms in related situations
 - Elliptic genus of E-strings Haghighat, Lockhart, Vafa 1406.0850; Kim, Kim, Lee, Park, Vafa 1411.2324; Cai, Huang, Sun 1411.2801
 - 6D SCFT Haghighat, Klemm, Lockhart, Vafa, 1412.3152
- $E_2 \mapsto \widehat{E_2} = E_2 3/(\pi \tau_2)$ sends $Z \mapsto 3$. Jacobi form ansatz implies 3 automatically satisfies modular anomaly equation from Alim, Scheidegger, Yau, Zhou 1205.1784, 1306.0002
- We can now *derive* the modular anomaly equation directly from the wave function version of the holomorphic anomaly equation Bershadsky, Cecotti, Ooguri, Vafa hep-th/9302103, Witten hep-th/9306122

くロト (過) (目) (日)

- Appearence of Jacobi forms in related situations
 - Elliptic genus of E-strings Haghighat, Lockhart, Vafa 1406.0850; Kim, Kim, Lee, Park, Vafa 1411.2324; Cai, Huang, Sun 1411.2801
 - 6D SCFT Haghighat, Klemm, Lockhart, Vafa, 1412.3152
- $E_2 \mapsto \widehat{E_2} = E_2 3/(\pi \tau_2)$ sends $Z \mapsto \mathfrak{Z}$. Jacobi form ansatz implies \mathfrak{Z} automatically satisfies modular anomaly equation from Alim, Scheidegger, Yau, Zhou 1205.1784, 1306.0002
- We can now *derive* the modular anomaly equation directly from the wave function version of the holomorphic anomaly equation Bershadsky, Cecotti, Ooguri, Vafa hep-th/9302103, Witten hep-th/9306122

ヘロト 人間 ト ヘヨト ヘヨト

- Appearence of Jacobi forms in related situations
 - Elliptic genus of E-strings Haghighat, Lockhart, Vafa 1406.0850; Kim, Kim, Lee, Park, Vafa 1411.2324; Cai, Huang, Sun 1411.2801
 - 6D SCFT Haghighat, Klemm, Lockhart, Vafa, 1412.3152
- $E_2 \mapsto \widehat{E_2} = E_2 3/(\pi \tau_2)$ sends $Z \mapsto \mathfrak{Z}$. Jacobi form ansatz implies \mathfrak{Z} automatically satisfies modular anomaly equation from Alim, Scheidegger, Yau, Zhou 1205.1784, 1306.0002
- We can now *derive* the modular anomaly equation directly from the wave function version of the holomorphic anomaly equation Bershadsky, Cecotti, Ooguri, Vafa hep-th/9302103, Witten hep-th/9306122

・ 同 ト ・ ヨ ト ・ ヨ ト …

٩

$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \tau_{\gamma} = \frac{a\tau + b}{c\tau + d}, \ z_{\gamma} = \frac{z}{c\tau + d}$$

Definition A Jacobi form of weight k and index m is a function φ(τ, z) satisfying

$$\phi(\tau_{\gamma}, Z_{\gamma}) = (C\tau + d)^{k} e^{\frac{2\pi i m c z^{2}}{C\tau + d}} \phi(\tau, Z)$$
$$\phi(\tau, Z + \lambda\tau + \mu) = e^{-2\pi i m (\lambda^{2}\tau + 2\lambda Z)} \phi(\tau, Z)$$

- A modular form of weight k is a weak Jacobi form of weight k and index 0 and conversely
- ϕ has Fourier expansion

$$\phi = \sum_{n,r} c(n,r)q^n y^r, \ y = \exp(2\pi i z)$$

 A weak Jacobi form satisfies c(n, r) = 0 unless n ≥ 0, i.e. holomorphic in q and z (but not necessarily in y)

۲

$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \tau_{\gamma} = \frac{a\tau + b}{c\tau + d}, \ z_{\gamma} = \frac{z}{c\tau + d}$$

Definition A Jacobi form of weight k and index m is a function φ(τ, z) satisfying

$$\phi(\tau_{\gamma}, \mathbf{Z}_{\gamma}) = (\mathbf{C}\tau + \mathbf{d})^{k} \, \mathbf{e}^{\frac{2\pi i m c z^{2}}{\mathbf{C}\tau + \mathbf{d}}} \phi(\tau, \mathbf{Z})$$
$$\phi(\tau, \mathbf{Z} + \lambda \tau + \mu) = \mathbf{e}^{-2\pi i m (\lambda^{2}\tau + 2\lambda \mathbf{Z})} \phi(\tau, \mathbf{Z})$$

- A modular form of weight k is a weak Jacobi form of weight k and index 0 and conversely
- ϕ has Fourier expansion

$$\phi = \sum_{n,r} c(n,r)q^n y^r, \ y = \exp(2\pi i z)$$

 A weak Jacobi form satisfies c(n, r) = 0 unless n ≥ 0, i.e. holomorphic in q and z (but not necessarily in y)

۲

$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \tau_{\gamma} = \frac{a\tau + b}{c\tau + d}, \ z_{\gamma} = \frac{z}{c\tau + d}$$

Definition A Jacobi form of weight k and index m is a function φ(τ, z) satisfying

$$\phi(\tau_{\gamma}, \mathbf{Z}_{\gamma}) = (\mathbf{C}\tau + \mathbf{d})^{k} \, \mathbf{e}^{\frac{2\pi i m c z^{2}}{\mathbf{C}\tau + \mathbf{d}}} \phi(\tau, \mathbf{Z})$$
$$\phi(\tau, \mathbf{Z} + \lambda \tau + \mu) = \mathbf{e}^{-2\pi i m (\lambda^{2}\tau + 2\lambda \mathbf{Z})} \phi(\tau, \mathbf{Z})$$

- A modular form of weight k is a weak Jacobi form of weight k and index 0 and conversely
- ϕ has Fourier expansion
 - $\phi = \sum_{n,r} c(n,r) q^n y^r, \ y = \exp(2\pi i z)$
- A weak Jacobi form satisfies c(n, r) = 0 unless n ≥ 0, i.e. holomorphic in q and z (but not necessarily in y)

۲

$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \tau_{\gamma} = \frac{a\tau + b}{c\tau + d}, \ z_{\gamma} = \frac{z}{c\tau + d}$$

Definition A Jacobi form of weight k and index m is a function φ(τ, z) satisfying

$$\phi(\tau_{\gamma}, \mathbf{Z}_{\gamma}) = (\mathbf{C}\tau + \mathbf{d})^{k} \, \mathbf{e}^{\frac{2\pi i m c z^{2}}{\mathbf{C}\tau + \mathbf{d}}} \phi(\tau, \mathbf{Z})$$
$$\phi(\tau, \mathbf{Z} + \lambda \tau + \mu) = \mathbf{e}^{-2\pi i m (\lambda^{2} \tau + 2\lambda \mathbf{Z})} \phi(\tau, \mathbf{Z})$$

- A modular form of weight k is a weak Jacobi form of weight k and index 0 and conversely
- ϕ has Fourier expansion

$$\phi = \sum_{n,r} c(n,r) q^n y^r, \ y = \exp(2\pi i z)$$

 A weak Jacobi form satisfies c(n, r) = 0 unless n ≥ 0, i.e. holomorphic in q and z (but not necessarily in y)

۲

$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \tau_{\gamma} = \frac{a\tau + b}{c\tau + d}, \ z_{\gamma} = \frac{z}{c\tau + d}$$

Definition A Jacobi form of weight k and index m is a function φ(τ, z) satisfying

$$\phi(\tau_{\gamma}, \mathbf{Z}_{\gamma}) = (\mathbf{C}\tau + \mathbf{d})^{k} \, \mathbf{e}^{\frac{2\pi i m c z^{2}}{\mathbf{C}\tau + \mathbf{d}}} \phi(\tau, \mathbf{Z})$$
$$\phi(\tau, \mathbf{Z} + \lambda \tau + \mu) = \mathbf{e}^{-2\pi i m (\lambda^{2} \tau + 2\lambda \mathbf{Z})} \phi(\tau, \mathbf{Z})$$

- A modular form of weight k is a weak Jacobi form of weight k and index 0 and conversely
- ϕ has Fourier expansion

$$\phi = \sum_{n,r} c(n,r)q^n y^r, \ y = \exp(2\pi i z)$$

 A weak Jacobi form satisfies c(n, r) = 0 unless n ≥ 0, i.e. holomorphic in q and z (but not necessarily in y)

Structure of Weak Jacobi Forms

Have a weak Jacobi form of weight -2 and index 1

$$\phi_{-2,1} = \left(y - 2 + y^{-1}\right) \prod_{n=1}^{\infty} \frac{\left(1 - yq^n\right)^2 \left(1 - y^{-1}q^n\right)^2}{\left(1 - q^n\right)^4}$$

- φ_{0,1} = (1/2)(elliptic genus of K3) is a weak Jacobi form of weight 0 and index 1
- **Proposition.** The weak Jacobi forms form a **C**-algebra, bigraded by weight and index. This algebra is freely generated by $E_4, E_6, \phi_{0,1}$, and $\phi_{-2,1}$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Structure of Weak Jacobi Forms

Have a weak Jacobi form of weight -2 and index 1

$$\phi_{-2,1} = \left(y - 2 + y^{-1}\right) \prod_{n=1}^{\infty} \frac{\left(1 - yq^n\right)^2 \left(1 - y^{-1}q^n\right)^2}{\left(1 - q^n\right)^4}$$

- φ_{0,1} = (1/2)(elliptic genus of K3) is a weak Jacobi form of weight 0 and index 1
- **Proposition.** The weak Jacobi forms form a **C**-algebra, bigraded by weight and index. This algebra is freely generated by E_4 , E_6 , $\phi_{0,1}$, and $\phi_{-2,1}$

(ロ) (同) (三) (三) (三) (○)

Structure of Weak Jacobi Forms

Have a weak Jacobi form of weight -2 and index 1

$$\phi_{-2,1} = \left(y - 2 + y^{-1}\right) \prod_{n=1}^{\infty} \frac{\left(1 - yq^n\right)^2 \left(1 - y^{-1}q^n\right)^2}{\left(1 - q^n\right)^4}$$

- φ_{0,1} = (1/2)(elliptic genus of K3) is a weak Jacobi form of weight 0 and index 1
- Proposition. The weak Jacobi forms form a C-algebra, bigraded by weight and index. This algebra is freely generated by *E*₄, *E*₆, φ_{0,1}, and φ_{-2,1}

(ロ) (同) (三) (三) (三) (○)

- $\phi_1(\tau, z)$ has weight 16d = 16 and index (1/3)d(d-1)(d+4) = 0
- So ϕ_1 is an ordinary modular form of weight 16
- $\phi_1 = \alpha E_4^4 + \beta E_4 E_6^2$ for some α, β
- φ₁, hence Z₁ is completely determined by 2 BPS (or PT) invariants!
- Curves in class β = ℓ are parametrized by lines in P², a P², so n⁰_ℓ = χ(P²) = 3
- Curves in class $\beta = \ell + f$ are the union of a line and a fiber, parametrized by a **P**¹-bundle over **P**², $n_{\ell+f}^1 = -\chi = -6$
- $\phi_1 = (1/48)(31E_4^4 + 113E_4E_6^2)$

- $\phi_1(\tau, z)$ has weight 16d = 16 and index (1/3)d(d-1)(d+4) = 0
- So ϕ_1 is an ordinary modular form of weight 16
- $\phi_1 = \alpha E_4^4 + \beta E_4 E_6^2$ for some α, β
- φ₁, hence Z₁ is completely determined by 2 BPS (or PT) invariants!
- Curves in class β = ℓ are parametrized by lines in P², a P², so n⁰_ℓ = χ(P²) = 3
- Curves in class $\beta = \ell + f$ are the union of a line and a fiber, parametrized by a **P**¹-bundle over **P**², $n_{\ell+f}^1 = -\chi = -6$
- $\phi_1 = (1/48)(31E_4^4 + 113E_4E_6^2)$

- $\phi_1(\tau, z)$ has weight 16d = 16 and index (1/3)d(d-1)(d+4) = 0
- So ϕ_1 is an ordinary modular form of weight 16

•
$$\phi_1 = \alpha E_4^4 + \beta E_4 E_6^2$$
 for some α, β

- φ₁, hence Z₁ is completely determined by 2 BPS (or PT) invariants!
- Curves in class β = ℓ are parametrized by lines in P², a P², so n⁰_ℓ = χ(P²) = 3
- Curves in class $\beta = \ell + f$ are the union of a line and a fiber, parametrized by a **P**¹-bundle over **P**², $n_{\ell+f}^1 = -\chi = -6$
- $\phi_1 = (1/48)(31E_4^4 + 113E_4E_6^2)$

- $\phi_1(\tau, z)$ has weight 16d = 16 and index (1/3)d(d-1)(d+4) = 0
- So ϕ_1 is an ordinary modular form of weight 16

•
$$\phi_1 = \alpha E_4^4 + \beta E_4 E_6^2$$
 for some α, β

- φ₁, hence Z₁ is completely determined by 2 BPS (or PT) invariants!
- Curves in class β = ℓ are parametrized by lines in P², a P², so n⁰_ℓ = χ(P²) = 3
- Curves in class $\beta = \ell + f$ are the union of a line and a fiber, parametrized by a **P**¹-bundle over **P**², $n_{\ell+f}^1 = -\chi = -6$
- $\phi_1 = (1/48)(31E_4^4 + 113E_4E_6^2)$

- $\phi_1(\tau, z)$ has weight 16d = 16 and index (1/3)d(d-1)(d+4) = 0
- So ϕ_1 is an ordinary modular form of weight 16

•
$$\phi_1 = \alpha E_4^4 + \beta E_4 E_6^2$$
 for some α, β

- φ₁, hence Z₁ is completely determined by 2 BPS (or PT) invariants!
- Curves in class β = ℓ are parametrized by lines in P², a P², so n⁰_ℓ = χ(P²) = 3
- Curves in class $\beta = \ell + f$ are the union of a line and a fiber, parametrized by a **P**¹-bundle over **P**², $n_{\ell+f}^1 = -\chi = -6$
- $\phi_1 = (1/48)(31E_4^4 + 113E_4E_6^2)$

- $\phi_1(\tau, z)$ has weight 16d = 16 and index (1/3)d(d-1)(d+4) = 0
- So ϕ_1 is an ordinary modular form of weight 16

•
$$\phi_1 = \alpha E_4^4 + \beta E_4 E_6^2$$
 for some α, β

- φ₁, hence Z₁ is completely determined by 2 BPS (or PT) invariants!
- Curves in class β = ℓ are parametrized by lines in P², a P², so n⁰_ℓ = χ(P²) = 3
- Curves in class $\beta = \ell + f$ are the union of a line and a fiber, parametrized by a **P**¹-bundle over **P**², $n_{\ell+f}^1 = -\chi = -6$

• $\phi_1 = (1/48)(31E_4^4 + 113E_4E_6^2)$

- $\phi_1(\tau, z)$ has weight 16d = 16 and index (1/3)d(d-1)(d+4) = 0
- So ϕ_1 is an ordinary modular form of weight 16

•
$$\phi_1 = \alpha E_4^4 + \beta E_4 E_6^2$$
 for some α, β

- φ₁, hence Z₁ is completely determined by 2 BPS (or PT) invariants!
- Curves in class β = ℓ are parametrized by lines in P², a P², so n⁰_ℓ = χ(P²) = 3
- Curves in class $\beta = \ell + f$ are the union of a line and a fiber, parametrized by a **P**¹-bundle over **P**², $n_{\ell+f}^1 = -\chi = -6$

•
$$\phi_1 = (1/48)(31E_4^4 + 113E_4E_6^2)$$

$g \setminus e$	0	1	2	3	4	5
0	3	-1080	143370	204071184	21772947555	1076518252152
1	0	-6	2142	-280284	-408993990	-44771454090
2	0	0	9	-3192	412965	614459160
3	0	0	0	-12	4230	-541440
4	0	0	0	0	15	-5256
5	0	0	0	0	0	-18
6	0	0	0	0	0	0

Table: Some BPS invariants for base degree d = 1. Infinitely many BPS numbers have been verified geometrically

◆□▶ ◆□▶ ◆臣▶ ◆臣▶
• k = 32, m = 4

- Have a 17-dimensional space of weak Jacobi forms of weight 32 and index 4
- Constraints: enumerative geometry (which suffices in this case), holomorphic anomaly, conifold gap condition, and invariance under *I*. Many more than 17 constraints, yet have a unique solution
- Following Zagier, put $A = \phi_{-2,1}$, $B = \phi_{0,1}$, $Q = E_4$, $R = E_6$
- $\phi_2 = (1/23887872)B^4Q^2(31Q^3 + 113R^2)^2 + (1/1146617856)[2507892B^3AQ^7R + 9070872B^3AQ^4R^3 + 2355828B^3AQR^5 + 36469B^2A^2Q^9 + 764613B^2A^2Q^6R^2 823017B^2A^2Q^3R^4 + 21935B^2A^2R^6 9004644BA^3Q^8R 30250296BA^3Q^5R^3 6530148BA^3Q^2R^5 + 31A^4Q^{10} + 5986623A^4Q^7R^2 + 19960101A^4Q^4R^4 + 4908413A^4QR^6]$

ヘロン ヘアン ヘビン ヘビン

- k = 32, m = 4
- Have a 17-dimensional space of weak Jacobi forms of weight 32 and index 4
- Constraints: enumerative geometry (which suffices in this case), holomorphic anomaly, conifold gap condition, and invariance under *I*. Many more than 17 constraints, yet have a unique solution
- Following Zagier, put $A = \phi_{-2,1}$, $B = \phi_{0,1}$, $Q = E_4$, $R = E_6$
- $\phi_2 = (1/23887872)B^4Q^2(31Q^3 + 113R^2)^2 + (1/1146617856)[2507892B^3AQ^7R + 9070872B^3AQ^4R^3 + 2355828B^3AQR^5 + 36469B^2A^2Q^9 + 764613B^2A^2Q^6R^2 823017B^2A^2Q^3R^4 + 21935B^2A^2R^6 9004644BA^3Q^8R 30250296BA^3Q^5R^3 6530148BA^3Q^2R^5 + 31A^4Q^{10} + 5986623A^4Q^7R^2 + 19960101A^4Q^4R^4 + 4908413A^4QR^6]$

・ロト ・ 理 ト ・ ヨ ト ・

- k = 32, m = 4
- Have a 17-dimensional space of weak Jacobi forms of weight 32 and index 4
- Constraints: enumerative geometry (which suffices in this case), holomorphic anomaly, conifold gap condition, and invariance under *I*. Many more than 17 constraints, yet have a unique solution
- Following Zagier, put $A = \phi_{-2,1}$, $B = \phi_{0,1}$, $Q = E_4$, $R = E_6$
- $\phi_2 = (1/23887872)B^4Q^2(31Q^3 + 113R^2)^2 + (1/1146617856)[2507892B^3AQ^7R + 9070872B^3AQ^4R^3 + 2355828B^3AQR^5 + 36469B^2A^2Q^9 + 764613B^2A^2Q^6R^2 823017B^2A^2Q^3R^4 + 21935B^2A^2R^6 9004644BA^3Q^8R 30250296BA^3Q^5R^3 6530148BA^3Q^2R^5 + 31A^4Q^{10} + 5986623A^4Q^7R^2 + 19960101A^4Q^4R^4 + 4908413A^4QR^6]$

イロン 不良 とくほう 不良 とうほ

- k = 32, m = 4
- Have a 17-dimensional space of weak Jacobi forms of weight 32 and index 4
- Constraints: enumerative geometry (which suffices in this case), holomorphic anomaly, conifold gap condition, and invariance under *I*. Many more than 17 constraints, yet have a unique solution
- Following Zagier, put $A = \phi_{-2,1}$, $B = \phi_{0,1}$, $Q = E_4$, $R = E_6$
- $\phi_2 = (1/23887872)B^4Q^2(31Q^3 + 113R^2)^2 + (1/1146617856)[2507892B^3AQ^7R + 9070872B^3AQ^4R^3 + 2355828B^3AQR^5 + 36469B^2A^2Q^9 + 764613B^2A^2Q^6R^2 823017B^2A^2Q^3R^4 + 21935B^2A^2R^6 9004644BA^3Q^8R 30250296BA^3Q^5R^3 6530148BA^3Q^2R^5 + 31A^4Q^{10} + 5986623A^4Q^7R^2 + 19960101A^4Q^4R^4 + 4908413A^4QR^6]$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

• k = 32, m = 4

- Have a 17-dimensional space of weak Jacobi forms of weight 32 and index 4
- Constraints: enumerative geometry (which suffices in this case), holomorphic anomaly, conifold gap condition, and invariance under *I*. Many more than 17 constraints, yet have a unique solution
- Following Zagier, put $A = \phi_{-2,1}$, $B = \phi_{0,1}$, $Q = E_4$, $R = E_6$
- $\phi_2 = (1/23887872)B^4Q^2(31Q^3 + 113R^2)^2 + (1/1146617856)[2507892B^3AQ^7R + 9070872B^3AQ^4R^3 + 2355828B^3AQR^5 + 36469B^2A^2Q^9 + 764613B^2A^2Q^6R^2 823017B^2A^2Q^3R^4 + 21935B^2A^2R^6 9004644BA^3Q^8R 30250296BA^3Q^5R^3 6530148BA^3Q^2R^5 + 31A^4Q^{10} + 5986623A^4Q^7R^2 + 19960101A^4Q^4R^4 + 4908413A^4QR^6]$

ヘロン 人間 とくほ とくほ とう

$g \setminus e$	0	1	2	3	4	5
0	-6	2700	-574560	74810520	-49933059660	7772494870800
1	0	15	-8574	2126358	521856996	1122213103092
2	0	0	-36	20826	-5904756	-47646003780
3	0	0	0	66	-45729	627574428
4	0	0	0	0	-132	-453960
5	0	0	0	0	0	-5031
6	0	0	0	0	0	-18
7	0	0	0	0	0	0
8	0	0	0	0	0	0

Table: Some BPS invariants for d = 2. Infinitely many PT invariants have been verified geometrically.

イロン イ理 とく ヨン イヨン

Further Results

• Have found ϕ_d for $d \leq 7$

- We expect our methods to work in principle to determine ϕ_d for $d \leq 20$
- This gives all BPS invariants for $d \le 20$ and all g and e
- We expect the φ_d for d ≤ 20 to determine the F_g for g ≤ 189 by solving the holomorphic anomaly equation
- Hence we expect to be able to find the BPS invariants for g ≤ 189 and all (d, e)

くロト (過) (目) (日)

- Have found ϕ_d for $d \leq 7$
- We expect our methods to work in principle to determine ϕ_d for $d \leq 20$
- This gives all BPS invariants for $d \le 20$ and all g and e
- We expect the ϕ_d for $d \le 20$ to determine the F_g for $g \le 189$ by solving the holomorphic anomaly equation
- Hence we expect to be able to find the BPS invariants for g ≤ 189 and all (d, e)

ヘロト 人間 ト ヘヨト ヘヨト

- Have found ϕ_d for $d \leq 7$
- We expect our methods to work in principle to determine ϕ_d for $d \leq 20$
- This gives all BPS invariants for $d \le 20$ and all g and e
- We expect the φ_d for d ≤ 20 to determine the F_g for g ≤ 189 by solving the holomorphic anomaly equation
- Hence we expect to be able to find the BPS invariants for $g \leq 189$ and all (d, e)

ヘロン 人間 とくほ とくほ とう

- Have found ϕ_d for $d \leq 7$
- We expect our methods to work in principle to determine ϕ_d for $d \leq 20$
- This gives all BPS invariants for $d \le 20$ and all g and e
- We expect the φ_d for d ≤ 20 to determine the F_g for g ≤ 189 by solving the holomorphic anomaly equation
- Hence we expect to be able to find the BPS invariants for $g \leq 189$ and all (d, e)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- Have found ϕ_d for $d \leq 7$
- We expect our methods to work in principle to determine ϕ_d for $d \leq 20$
- This gives all BPS invariants for d ≤ 20 and all g and e
- We expect the φ_d for d ≤ 20 to determine the F_g for g ≤ 189 by solving the holomorphic anomaly equation
- Hence we expect to be able to find the BPS invariants for $g \leq 189$ and all (d, e)

ヘロン 人間 とくほ とくほ とう

∃ <2 <</p>

 Gopakumar-Vafa invariants n^g_β vanish for g above Castelnuovo bound p_a(d, e): for an irreducible curve C of class β = dℓ + ef with e > 0,

$$p_a \leq p_a(d, e) = de - rac{1}{2} \left(3d^2 - d - 2
ight)$$

- Regularity of $P_d^g = \eta^{36d} F_d^g$ in B-model
- Invariance of *F^g* under *I* (studied previously in 1306.0002)
- Conifold gap condition: x = 0 conifold locus in B-model

$$F^g = \frac{c}{x^{2g-2}} + O(x^0)$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

 Gopakumar-Vafa invariants n^g_β vanish for g above Castelnuovo bound p_a(d, e): for an irreducible curve C of class β = dℓ + ef with e > 0,

$$p_a \leq p_a(d, e) = de - rac{1}{2} \left(3d^2 - d - 2
ight)$$

- Regularity of $P_d^g = \eta^{36d} F_d^g$ in B-model
- Invariance of F^g under I (studied previously in 1306.0002)
- Conifold gap condition: x = 0 conifold locus in B-model

$$F^g = \frac{c}{x^{2g-2}} + O(x^0)$$

・聞き ・ヨト ・ヨトー

 Gopakumar-Vafa invariants n^g_β vanish for g above Castelnuovo bound p_a(d, e): for an irreducible curve C of class β = dℓ + ef with e > 0,

$$p_a \leq p_a(d, e) = de - rac{1}{2} \left(3d^2 - d - 2
ight)$$

- Regularity of $P_d^g = \eta^{36d} F_d^g$ in B-model
- Invariance of F^g under I (studied previously in 1306.0002)
- Conifold gap condition: x = 0 conifold locus in B-model

$$F^g = \frac{c}{x^{2g-2}} + O(x^0)$$

 Gopakumar-Vafa invariants n^g_β vanish for g above Castelnuovo bound p_a(d, e): for an irreducible curve C of class β = dℓ + ef with e > 0,

$$p_a \leq p_a(d, e) = de - rac{1}{2} \left(3d^2 - d - 2
ight)$$

- Regularity of $P_d^g = \eta^{36d} F_d^g$ in B-model
- Invariance of F^g under I (studied previously in 1306.0002)
- Conifold gap condition: x = 0 conifold locus in B-model

$$F^g = \frac{c}{x^{2g-2}} + O(x^0)$$

- $\pi: X \to B$ elliptic fibration with a unique section *E*, fibers irreducible in codimension 1
- Curve class $\beta + df$, $\beta \in H_2(E, \mathbb{Z}) = H_2(B, \mathbb{Z})$
- Shift coordinates by $c_1(B)/2$
- $Z = Z_0(\tau, z) \left(1 + \sum_{\beta} Z_{\beta}(\tau, z) Q^{\beta} \right)$
- $Z_{\beta}(\tau, z)$ is a weak Jacobi form of weight zero and index $\beta \cdot (\beta c_1(B))/2$ with multipliers

$$Z_{\beta} = \frac{\phi_{d}(\tau, z)}{\eta(\tau)^{12c_{1}(B) \cdot \beta} \prod_{j=1}^{b_{2}(B)} \prod_{k=1}^{\beta_{j}} \phi_{-2,1}(\tau, kz)},$$

where $\phi_d(\tau, z)$ is a weak Jacobi form of determined weight and index.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

π : X → B elliptic fibration with a unique section E, fibers irreducible in codimension 1

• Curve class $\beta + df$, $\beta \in H_2(E, \mathbb{Z}) = H_2(B, \mathbb{Z})$

• Shift coordinates by $c_1(B)/2$

•
$$Z = Z_0(\tau, z) \left(1 + \sum_{\beta} Z_{\beta}(\tau, z) Q^{\beta} \right)$$

• $Z_{\beta}(\tau, z)$ is a weak Jacobi form of weight zero and index $\beta \cdot (\beta - c_1(B))/2$ with multipliers

$$Z_{\beta} = \frac{\phi_{d}(\tau, z)}{\eta(\tau)^{12c_{1}(B) \cdot \beta} \prod_{j=1}^{b_{2}(B)} \prod_{k=1}^{\beta_{j}} \phi_{-2,1}(\tau, kz)},$$

where $\phi_d(\tau, z)$ is a weak Jacobi form of determined weight and index.

ヘロン 人間 とくほ とくほ とう

3

- $\pi: X \to B$ elliptic fibration with a unique section *E*, fibers irreducible in codimension 1
- Curve class $\beta + df$, $\beta \in H_2(E, \mathbb{Z}) = H_2(B, \mathbb{Z})$
- Shift coordinates by c₁(B)/2
- $Z = Z_0(\tau, z) \left(1 + \sum_{\beta} Z_{\beta}(\tau, z) Q^{\beta} \right)$
- $Z_{\beta}(\tau, z)$ is a weak Jacobi form of weight zero and index $\beta \cdot (\beta c_1(B))/2$ with multipliers

$$Z_{\beta} = \frac{\phi_{d}(\tau, z)}{\eta(\tau)^{12c_{1}(B) \cdot \beta} \prod_{j=1}^{b_{2}(B)} \prod_{k=1}^{\beta_{j}} \phi_{-2,1}(\tau, kz)},$$

where $\phi_d(\tau, z)$ is a weak Jacobi form of determined weight and index.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

- $\pi: X \to B$ elliptic fibration with a unique section *E*, fibers irreducible in codimension 1
- Curve class $\beta + df$, $\beta \in H_2(E, \mathbb{Z}) = H_2(B, \mathbb{Z})$
- Shift coordinates by c₁(B)/2

•
$$Z = Z_0(\tau, z) \left(1 + \sum_{\beta} Z_{\beta}(\tau, z) Q^{\beta}\right)$$

• $Z_{\beta}(\tau, z)$ is a weak Jacobi form of weight zero and index $\beta \cdot (\beta - c_1(B))/2$ with multipliers

$$Z_{\beta} = \frac{\phi_{d}(\tau, z)}{\eta(\tau)^{12c_{1}(B) \cdot \beta} \prod_{j=1}^{b_{2}(B)} \prod_{k=1}^{\beta_{j}} \phi_{-2,1}(\tau, kz)},$$

where $\phi_d(\tau, z)$ is a weak Jacobi form of determined weight and index.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

- $\pi: X \to B$ elliptic fibration with a unique section *E*, fibers irreducible in codimension 1
- Curve class $\beta + df$, $\beta \in H_2(E, \mathbb{Z}) = H_2(B, \mathbb{Z})$
- Shift coordinates by c₁(B)/2
- $Z = Z_0(\tau, z) \left(1 + \sum_{\beta} Z_{\beta}(\tau, z) Q^{\beta}\right)$
- $Z_{\beta}(\tau, z)$ is a weak Jacobi form of weight zero and index $\beta \cdot (\beta c_1(B))/2$ with multipliers

$$Z_{\beta} = \frac{\phi_{d}(\tau, z)}{\eta(\tau)^{12c_{1}(B)\cdot\beta}\prod_{j=1}^{b_{2}(B)}\prod_{k=1}^{\beta_{j}}\phi_{-2,1}(\tau, kz)},$$

where $\phi_d(\tau, z)$ is a weak Jacobi form of determined weight and index.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

۲

- $\pi: X \to B$ elliptic fibration with a unique section *E*, fibers irreducible in codimension 1
- Curve class $\beta + df$, $\beta \in H_2(E, \mathbb{Z}) = H_2(B, \mathbb{Z})$
- Shift coordinates by c₁(B)/2
- $Z = Z_0(\tau, z) \left(1 + \sum_{\beta} Z_{\beta}(\tau, z) Q^{\beta}\right)$
- $Z_{\beta}(\tau, z)$ is a weak Jacobi form of weight zero and index $\beta \cdot (\beta c_1(B))/2$ with multipliers

$$Z_{\beta} = \frac{\phi_{d}(\tau, z)}{\eta(\tau)^{12c_{1}(B) \cdot \beta} \prod_{j=1}^{b_{2}(B)} \prod_{k=1}^{\beta_{j}} \phi_{-2,1}(\tau, kz)},$$

where $\phi_d(\tau, z)$ is a weak Jacobi form of determined weight and index.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

- Can see the SL(2, **Z**) acting directly on *X* without mirror symmetry, following Kontsevich
- Autoequivalence of D^b(X) (actually twisted derived category) following Bridgeland alg-geom/9705002; Andreas, Curio, Hernández Ruipérez, Yau math/0012196
- X is itself moduli of sheaves on X supported on fibers

$$p \mapsto \mathcal{O}_{f_p}(p-p_0) =: \mathcal{P}_p$$

where $f_p = \pi^{-1}(\pi(p))$ is the fiber over p and $p_0 = f_p \cap E$ • Globalize to Poincaré sheaf on $X \times_B X$

$$\mathcal{P} = \mathcal{I}^* \otimes \mathcal{O}(-E \times_B X - X \times_B E)$$

• \mathcal{I} ideal sheaf of $X \hookrightarrow X \times_B X$

くロト (過) (目) (日)

- Can see the SL(2, Z) acting directly on X without mirror symmetry, following Kontsevich
- Autoequivalence of D^b(X) (actually twisted derived category) following Bridgeland alg-geom/9705002; Andreas, Curio, Hernández Ruipérez, Yau math/0012196
- X is itself moduli of sheaves on X supported on fibers

$$p \mapsto \mathcal{O}_{f_p}(p-p_0) =: \mathcal{P}_p$$

where $f_p = \pi^{-1}(\pi(p))$ is the fiber over p and $p_0 = f_p \cap E$ • Globalize to Poincaré sheaf on $X \times_B X$

$$\mathcal{P} = \mathcal{I}^* \otimes \mathcal{O}(-E \times_B X - X \times_B E)$$

• \mathcal{I} ideal sheaf of $X \hookrightarrow X \times_B X$

ヘロト ヘアト ヘビト ヘビト

- Can see the SL(2, Z) acting directly on X without mirror symmetry, following Kontsevich
- Autoequivalence of D^b(X) (actually twisted derived category) following Bridgeland alg-geom/9705002; Andreas, Curio, Hernández Ruipérez, Yau math/0012196
- X is itself moduli of sheaves on X supported on fibers

$$p\mapsto \mathcal{O}_{f_p}(p-p_0)=:\mathcal{P}_p$$

where $f_p = \pi^{-1}(\pi(p))$ is the fiber over p and $p_0 = f_p \cap E$ • Globalize to Poincaré sheaf on $X \times_B X$

$$\mathcal{P} = \mathcal{I}^* \otimes \mathcal{O}(-E \times_B X - X \times_B E)$$

• \mathcal{I} ideal sheaf of $X \hookrightarrow X \times_B X$

(ロ) (同) (三) (三) (三) (○)

- Can see the SL(2, Z) acting directly on X without mirror symmetry, following Kontsevich
- Autoequivalence of D^b(X) (actually twisted derived category) following Bridgeland alg-geom/9705002; Andreas, Curio, Hernández Ruipérez, Yau math/0012196
- X is itself moduli of sheaves on X supported on fibers

$$p\mapsto \mathcal{O}_{f_p}(p-p_0)=:\mathcal{P}_p$$

where $f_p = \pi^{-1}(\pi(p))$ is the fiber over p and $p_0 = f_p \cap E$

Globalize to Poincaré sheaf on X ×_B X

$$\mathcal{P} = \mathcal{I}^* \otimes \mathcal{O}(-E \times_B X - X \times_B E)$$

• \mathcal{I} ideal sheaf of $X \hookrightarrow X \times_B X$

ヘロン 人間 とくほ とくほ とう

• Relative Fourier-Mukai transform with kernel $\mathcal{P} \otimes \mathcal{O}_X(\pi^*c_1/2)$ on $X \times_B X$

•
$$S(F^{\bullet}) = R\pi_{2*} \left(L\pi_1^* F^{\bullet} \overset{L}{\otimes} \mathcal{P} \otimes \mathcal{O}_X(\pi^* c_1/2) \right)$$

- Roughly, $S(\mathcal{F}^{\bullet})_{\rho} = H^*(\mathcal{F}^{\bullet} \otimes \mathcal{P}_{\rho} \otimes \mathcal{O}_X(c_1/2))$
- $T(F^{\bullet}) = F^{\bullet} \otimes \mathcal{O}_X(E + \pi^* c_1(B)/2)$

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● の Q ()~

• Relative Fourier-Mukai transform with kernel $\mathcal{P} \otimes \mathcal{O}_X(\pi^*c_1/2)$ on $X \times_B X$

•
$$S(F^{\bullet}) = R\pi_{2*} \left(L\pi_1^* F^{\bullet} \overset{L}{\otimes} \mathcal{P} \otimes \mathcal{O}_X(\pi^* c_1/2) \right)$$

• Roughly,
$$S(\mathcal{F}^{\bullet})_{\rho} = H^*(\mathcal{F}^{\bullet} \otimes \mathcal{P}_{\rho} \otimes \mathcal{O}_X(c_1/2))$$

•
$$T(F^{\bullet}) = F^{\bullet} \otimes \mathcal{O}_X(E + \pi^* c_1(B)/2)$$

・ロト ・四ト ・ヨト ・ヨト

ъ

 D^b(X) is generated by sheaves F and π*(F), F sheaf on B = E

 $S(\mathcal{F}) = \pi^*(\mathcal{F} \otimes \mathcal{O}(c_1/2)), \qquad S(\pi^*(\mathcal{F})) = \mathcal{F} \otimes \mathcal{O}(-c_1/2)[-1]$

- [-1] means shift one place to right in $D^b(X)$
- So $S^2 = [-1]$
- Passing to K-theory gives $S^2 = -1$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

D^b(X) is generated by sheaves F and π*(F), F sheaf on B = E

 $S(\mathcal{F}) = \pi^*(\mathcal{F} \otimes \mathcal{O}(c_1/2)), \qquad S(\pi^*(\mathcal{F})) = \mathcal{F} \otimes \mathcal{O}(-c_1/2)[-1]$

- [-1] means shift one place to right in $D^b(X)$
- So *S*² = [−1]
- Passing to K-theory gives $S^2 = -1$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

۲

 D^b(X) is generated by sheaves F and π*(F), F sheaf on B = E

 $S(\mathcal{F}) = \pi^*(\mathcal{F} \otimes \mathcal{O}(c_1/2)), \qquad S(\pi^*(\mathcal{F})) = \mathcal{F} \otimes \mathcal{O}(-c_1/2)[-1]$

- [-1] means shift one place to right in $D^b(X)$
- So *S*² = [−1]
- Passing to K-theory gives $S^2 = -1$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

۲

 D^b(X) is generated by sheaves F and π*(F), F sheaf on B = E

$$S(\mathcal{F}) = \pi^*(\mathcal{F} \otimes \mathcal{O}(c_1/2)), \qquad S(\pi^*(\mathcal{F})) = \mathcal{F} \otimes \mathcal{O}(-c_1/2)[-1]$$

- [-1] means shift one place to right in $D^b(X)$
- So *S*² = [−1]
- Passing to K-theory gives $S^2 = -1$

(ロ) (同) (三) (三) (三) (○)

$ST \in SL(2, \mathbf{Z})$

• Using
$$\mathcal{O}(E)|_E \simeq \mathcal{O}_B(-c_1)$$
 have
 $ST(\mathcal{F}) = S(\mathcal{F} \otimes \mathcal{O}(-c_1/2)) = \pi^*(\mathcal{F})$
 $ST(\pi^*(\mathcal{F})) = \pi^*(\mathcal{F}) \otimes \mathcal{O}_X(-E)$

$$(ST)^3 = [-1]$$

• Passing to K-theory gives $(ST)^3 = -1$

Intrinsic SL(2, Z)-action on H^{even}(X) "with multipliers"

ヘロン ヘアン ヘビン ヘビン

3

$ST \in SL(2, \mathbf{Z})$

0

٥

Using
$$\mathcal{O}(E)|_E \simeq \mathcal{O}_B(-c_1)$$
 have
 $ST(\mathcal{F}) = S(\mathcal{F} \otimes \mathcal{O}(-c_1/2)) = \pi^*(\mathcal{F})$
 $ST(\pi^*(\mathcal{F})) = \pi^*(\mathcal{F}) \otimes \mathcal{O}_X(-E)$

$$(ST)^3 = [-1]$$

• Passing to K-theory gives $(ST)^3 = -1$

Intrinsic SL(2, Z)-action on H^{even}(X) "with multipliers"

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

$ST \in SL(2, \mathbf{Z})$

• Using
$$\mathcal{O}(E)|_E \simeq \mathcal{O}_B(-c_1)$$
 have
 $ST(\mathcal{F}) = S(\mathcal{F} \otimes \mathcal{O}(-c_1/2)) = \pi^*(\mathcal{F})$
 $ST(\pi^*(\mathcal{F})) = \pi^*(\mathcal{F}) \otimes \mathcal{O}_X(-E)$

$$(ST)^3 = [-1]$$

- Passing to K-theory gives $(ST)^3 = -1$
- Intrinsic SL(2, Z)-action on H^{even}(X) "with multipliers"

・ロト ・ 日 ・ モ ト ・ モ ・ ・ 日 ・ ・ つ へ ()・

Degree 0

• Only nonzero BPS invariants in multiple of fiber class

$$n_0^0 = -\chi(X)/2, \; n_{kf}^0 = -\chi(X) = 60c_1^2, \; n_{kf}^1 = \chi(B), \; (k > 0)$$

Y. Toda math/1103.4229

• Determines all Z_0 and F_0^g . In particular

$$F_0^g = rac{15c_1^2B_{2g}B_{2g-2}}{2g(g-1)(2g-2)!}E_{2g-2}(q), \qquad g\geq 2$$

• F_0^g is modular except for g = 2

$$F_0^2 = \frac{c_1^2}{96}E_2, \qquad \mathfrak{F}_0^2 = \frac{c_1^2}{96}\widehat{E}_2$$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

E DQC

Degree 0

• Only nonzero BPS invariants in multiple of fiber class

$$n_0^0 = -\chi(X)/2, \; n_{kf}^0 = -\chi(X) = 60c_1^2, \; n_{kf}^1 = \chi(B), \; (k > 0)$$

Y. Toda math/1103.4229

• Determines all Z_0 and F_0^g . In particular

$$F_0^g = rac{15 c_1^2 B_{2g} B_{2g-2}}{2g(g-1)(2g-2)!} E_{2g-2}(q), \qquad g \geq 2$$

• F_0^g is modular except for g = 2

$$F_0^2 = \frac{c_1^2}{96}E_2, \qquad \mathfrak{F}_0^2 = \frac{c_1^2}{96}\widehat{E}_2$$

・ 同 ト ・ ヨ ト ・ ヨ ト

э.
Degree 0

• Only nonzero BPS invariants in multiple of fiber class

$$n_0^0 = -\chi(X)/2, \; n_{kf}^0 = -\chi(X) = 60c_1^2, \; n_{kf}^1 = \chi(B), \; (k > 0)$$

Y. Toda math/1103.4229

• Determines all Z_0 and F_0^g . In particular

$$F_0^g = rac{15 c_1^2 B_{2g} B_{2g-2}}{2g(g-1)(2g-2)!} E_{2g-2}(q), \qquad g \geq 2$$

• F_0^g is modular except for g = 2

$$F_0^2 = \frac{c_1^2}{96}E_2, \qquad \mathfrak{F}_0^2 = \frac{c_1^2}{96}\widehat{E}_2$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

æ

Degree 0

• Only nonzero BPS invariants in multiple of fiber class

$$n_0^0 = -\chi(X)/2, \; n_{kf}^0 = -\chi(X) = 60c_1^2, \; n_{kf}^1 = \chi(B), \; (k > 0)$$

Y. Toda math/1103.4229

• Determines all Z_0 and F_0^g . In particular

$$F_0^g = rac{15 c_1^2 B_{2g} B_{2g-2}}{2g(g-1)(2g-2)!} E_{2g-2}(q), \qquad g \geq 2$$

• F_0^g is modular except for g = 2

$$F_0^2 = rac{c_1^2}{96}E_2, \qquad \mathfrak{F}_0^2 = rac{c_1^2}{96}\widehat{E}_2$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

æ

Holomorphic Anomaly

 $\left(\frac{\partial}{\partial \bar{z^{\alpha}}} + \frac{\lambda^2}{2} C^{\beta\gamma}_{\bar{\alpha}} D_{z^{\beta}} D_{z^{\gamma}}\right) \mathfrak{Z} = 0$

 $C^{\beta\gamma}_{\bar{\alpha}} = e^{2K} \bar{C}_{\bar{\alpha}\bar{\beta}\bar{\gamma}} G^{\bar{\beta}\beta} G^{\bar{\gamma}\gamma}$, *G* metric on moduli space of X° , *C* Yukawa coupling, *D* covariant derivative

 Calculate metric and Yukawa couplings at large complex structure to conclude from holomorphic anomaly in shifted coordinates

$$\left(\frac{1}{2\pi i}\frac{\partial}{\partial\bar{\tau}}-\frac{\lambda^2}{8\tau_2^2}\left(\beta-\frac{c_1(B)}{2}\right)\right)^2\mathfrak{Z}_\beta=0$$

ヘロト ヘアト ヘビト ヘビト

Holomorphic Anomaly

۰

 $\left(\frac{\partial}{\partial \bar{z^{\alpha}}} + \frac{\lambda^2}{2} C^{\beta\gamma}_{\bar{\alpha}} D_{z^{\beta}} D_{z^{\gamma}}\right) \mathfrak{Z} = 0$

 $C^{\beta\gamma}_{\bar{\alpha}} = e^{2K} \bar{C}_{\bar{\alpha}\bar{\beta}\bar{\gamma}} G^{\bar{\beta}\beta} G^{\bar{\gamma}\gamma}$, *G* metric on moduli space of X° , *C* Yukawa coupling, *D* covariant derivative

 Calculate metric and Yukawa couplings at large complex structure to conclude from holomorphic anomaly in shifted coordinates

$$\left(\frac{1}{2\pi i}\frac{\partial}{\partial \bar{\tau}} - \frac{\lambda^2}{8\tau_2^2}\left(\beta - \frac{c_1(B)}{2}\right)\right)^2 \mathfrak{Z}_{\beta} = 0$$

ヘロン 人間 とくほ とくほ とう

Almost holomorphic modular anomaly

 Rewrite in terms of almost holomorphic modular forms and use 3² result

$$\left(\frac{\partial}{\partial \widehat{E}_2} - \frac{z^2}{24}\beta\left(\beta - c_1(B)\right)\right)\mathfrak{Z}_d = 0$$

Holomorphic limit

$$\left(\frac{\partial}{\partial E_2} - \frac{z^2}{24}\beta\left(\beta - c_1(B)\right)\right)Z_d = 0$$

• Together with modularity implies *Z_d* is a Jacobi form of the claimed weight and index

ヘロト 人間 ト ヘヨト ヘヨト

Almost holomorphic modular anomaly

• Rewrite in terms of almost holomorphic modular forms and use \mathfrak{F}^2 result

$$\left(\frac{\partial}{\partial \widehat{E}_2} - \frac{z^2}{24}\beta\left(\beta - c_1(B)\right)\right)\mathfrak{Z}_d = 0$$

Holomorphic limit

$$\left(rac{\partial}{\partial E_2}-rac{z^2}{24}eta\left(eta-c_1(B)
ight)
ight)Z_d=0$$

 Together with modularity implies Z_d is a Jacobi form of the claimed weight and index

・ 同 ト ・ ヨ ト ・ ヨ ト ・

٥

$$Z = \exp\left(\sum_{\beta,g,m} n_{\beta}^{g} \frac{1}{m} \left(2\sin\left(m\pi z\right)\right)^{2g-2} q^{m\beta}\right)$$

Gopakumar-Vafa hep-th/9812127

• From g = 0 can have poles at torsion points of z

Back to P² to simplify notation, Q^d has a zero of order 3d/2 at q = 0 due to shift, introducing a pole of order 3d/2 in Z^d to compensate

•
$$\phi_{-2,1}(\tau, z)$$
 has a zero at $z = 0$

$$Z_d(\tau, z)\eta(\tau)^{36d} \prod_{k=1}^d \phi_{-2,1}(\tau, kz)$$

٥

$$Z = \exp\left(\sum_{\beta,g,m} n_{\beta}^{g} \frac{1}{m} \left(2\sin\left(m\pi z\right)\right)^{2g-2} q^{m\beta}\right)$$

Gopakumar-Vafa hep-th/9812127

- From g = 0 can have poles at torsion points of z
- Back to P² to simplify notation, Q^d has a zero of order 3d/2 at q = 0 due to shift, introducing a pole of order 3d/2 in Z^d to compensate

•
$$\phi_{-2,1}(\tau, z)$$
 has a zero at $z = 0$

$$Z_d(\tau, z)\eta(\tau)^{36d} \prod_{k=1}^d \phi_{-2,1}(\tau, kz)$$

٥

$$Z = \exp\left(\sum_{\beta,g,m} n_{\beta}^{g} \frac{1}{m} \left(2\sin\left(m\pi z\right)\right)^{2g-2} q^{m\beta}\right)$$

Gopakumar-Vafa hep-th/9812127

- From g = 0 can have poles at torsion points of z
- Back to P² to simplify notation, Q^d has a zero of order 3d/2 at q = 0 due to shift, introducing a pole of order 3d/2 in Z^d to compensate

•
$$\phi_{-2,1}(\tau,z)$$
 has a zero at $z=0$

$$Z_d(\tau, z)\eta(\tau)^{36d} \prod_{k=1}^d \phi_{-2,1}(\tau, kz)$$

٥

$$Z = \exp\left(\sum_{\beta,g,m} n_{\beta}^{g} \frac{1}{m} \left(2\sin\left(m\pi z\right)\right)^{2g-2} q^{m\beta}\right)$$

Gopakumar-Vafa hep-th/9812127

- From g = 0 can have poles at torsion points of z
- Back to P² to simplify notation, Q^d has a zero of order 3d/2 at q = 0 due to shift, introducing a pole of order 3d/2 in Z^d to compensate

•
$$\phi_{-2,1}(\tau, z)$$
 has a zero at $z = 0$

$$Z_d(\tau, z)\eta(\tau)^{36d} \prod_{k=1}^d \phi_{-2,1}(\tau, kz)$$

End of the argument

Letting

$$\phi_d(\tau, z) = Z_d(\tau, z) \eta(\tau)^{36d} \prod_{k=1}^d \phi_{-2,1}(\tau, kz)$$

we conclude that

$$Z_{d} = \frac{\phi_{d}(\tau, z)}{\eta(\tau)^{36d} \prod_{k=1}^{d} \phi_{-2,1}(\tau, kz)}$$

・ロト ・回ト ・ヨト ・ヨト

Work in Progress

• Refined $SL_2 \times SL_2$ BPS invariants

- More sections: relate to E-string calculation of BPS invariants of dP_n Huang-Klemm-Poretschkin 1308.0619
- Reducible elliptic fibers/enhanced gauge symmetries: richer monodromy structure, as Seidel-Thomas twists interact with SL(2, Z)

イロト イポト イヨト イヨト

Refined SL₂ × SL₂ BPS invariants

- More sections: relate to E-string calculation of BPS invariants of dP_n Huang-Klemm-Poretschkin 1308.0619
- Reducible elliptic fibers/enhanced gauge symmetries: richer monodromy structure, as Seidel-Thomas twists interact with SL(2, Z)

ヘロト 人間 ト ヘヨト ヘヨト

- Refined SL₂ × SL₂ BPS invariants
- More sections: relate to E-string calculation of BPS invariants of dP_n Huang-Klemm-Poretschkin 1308.0619
- Reducible elliptic fibers/enhanced gauge symmetries: richer monodromy structure, as Seidel-Thomas twists interact with SL(2, Z)

・ 同 ト ・ ヨ ト ・ ヨ ト

Some refined invariants

Sheldon Katz Elliptically fibered Calabi-Yau threefolds: mirror symmetry and Jac

・ロト ・聞 と ・ ヨ と ・ ヨ と 。

2

- The partition function of an elliptically fibered CY can be described by Jacobi forms
- The ansatz now seems well-justified on the physics side
- From the viewpoint of mathematical enumerative theories (GW,PT,DT) this is a complete mystery!

ヘロト ヘワト ヘビト ヘビト

- The partition function of an elliptically fibered CY can be described by Jacobi forms
- The ansatz now seems well-justified on the physics side
- From the viewpoint of mathematical enumerative theories (GW,PT,DT) this is a complete mystery!

(本間) (本語) (本語)

- The partition function of an elliptically fibered CY can be described by Jacobi forms
- The ansatz now seems well-justified on the physics side
- From the viewpoint of mathematical enumerative theories (GW,PT,DT) this is a complete mystery!

・ 同 ト ・ ヨ ト ・ ヨ ト