Plane partitions and vertex algebras

M. Bershtein

based on joint paper with B. Feigin, G. Merzon, arXiv:1512.08779+work in progress

28 June 2016

$$
[a_n, a_m] = n\delta_{n+m,0}, \quad [a_n, L_m] = 0
$$

$$
[L_n, L_m] = (n-m)L_{n+m} + \frac{c}{12}(n^3 - n)\delta_{n+m,0}
$$

[Fateev Lukyanov 1988] introduced W algebras $\mathrm{W}(\mathfrak{gl}_n)$, we will denote it by W_n For $n = 2$ W₂ \simeq H \oplus Vir.

$$
[a_n, a_m] = n\delta_{n+m,0}, \quad [a_n, L_m] = 0
$$

$$
[L_n, L_m] = (n-m)L_{n+m} + \frac{c}{12}(n^3 - n)\delta_{n+m,0}
$$

• There exist three different construction of W_n

$$
[a_n, a_m] = n\delta_{n+m,0}, \quad [a_n, L_m] = 0
$$

$$
[L_n, L_m] = (n-m)L_{n+m} + \frac{c}{12}(n^3 - n)\delta_{n+m,0}
$$

- \bullet There exist three different construction of W_n
	- W_n is a subalgebra in $H^{\oplus n}$, which commutes with certain screening operators. [Fateev Lukyanov 1988]

$$
[a_n, a_m] = n\delta_{n+m,0}, \quad [a_n, L_m] = 0
$$

$$
[L_n, L_m] = (n-m)L_{n+m} + \frac{c}{12}(n^3 - n)\delta_{n+m,0}
$$

- \bullet There exist three different construction of W_n
	- W_n is a subalgebra in $H^{\oplus n}$, which commutes with certain screening operators. [Fateev Lukyanov 1988]
	- W_n is given by Drinfeld-Sokolov (quantum hamilonian reduction) of \mathfrak{gl}_n . [Bershadsky Ooguri 1989][Feigin Frenkel 1990]

$$
[a_n, a_m] = n\delta_{n+m,0}, \quad [a_n, L_m] = 0
$$

$$
[L_n, L_m] = (n-m)L_{n+m} + \frac{c}{12}(n^3 - n)\delta_{n+m,0}
$$

- \bullet There exist three different construction of W_n
	- W_n is a subalgebra in $H^{\oplus n}$, which commutes with certain screening operators. [Fateev Lukyanov 1988]
	- W_n is given by Drinfeld-Sokolov (quantum hamilonian reduction) of \mathfrak{gl}_n . [Bershadsky Ooguri 1989][Feigin Frenkel 1990]
	- W_n is given y coset construction $\mathfrak{gl}_n \oplus \mathfrak{gl}_n/\mathfrak{gl}_n$ on the levels $k, 1, k+1$. [Goddard Kent Olive 1985]

[Fateev Lukyanov 1988] introduced W algebras $\mathrm{W}(\mathfrak{gl}_n)$, we will denote it by W_n For $n = 2$ W₂ \simeq H \oplus Vir.

$$
[a_n, a_m] = n\delta_{n+m,0}, \quad [a_n, L_m] = 0
$$

$$
[L_n, L_m] = (n-m)L_{n+m} + \frac{c}{12}(n^3 - n)\delta_{n+m,0}
$$

- \bullet There exist three different construction of W_n
	- W_n is a subalgebra in $H^{\oplus n}$, which commutes with certain screening operators. [Fateev Lukyanov 1988]
	- W_n is given by Drinfeld-Sokolov (quantum hamilonian reduction) of \mathfrak{gl}_n . [Bershadsky Ooguri 1989][Feigin Frenkel 1990]
	- W_n is given y coset construction $\mathfrak{gl}_n \oplus \mathfrak{gl}_n/\mathfrak{gl}_n$ on the levels $k, 1, k+1$. [Goddard Kent Olive 1985]
- \bullet Verma modules $M_{\vec{a}}$ are parametrized by *n* numbers a_1, \ldots, a_n . For generic a_1, \ldots, a_n the character equals

$$
\chi(V)=\frac{q^{\Delta}}{\prod_{k=1}(1-q^k)^n}
$$

In other words M is Fock module over $H^{\oplus n}$ and has a basis labeled by n-tuple of partitions.

AGT relation (Geometric representation theory)

 \bullet There exist an action of the algebra W_n on the direct sum of equivariant cohomology spaces of the moduli space of $U(n)$ instantons on \mathbb{C}^2 , $M(\vec{a}) \simeq \bigoplus_{N=0}^{\infty} H_{\text{equiviv}}(\mathcal{M}(n, N)).$ [Schiffmann, Vasserot; Maulik, Okounkov; Braverman, Finkelberg, Nakajima] Highest weight of M is given in terms of equivariant parameters a of the framing (or vev in gauge theory). Central charge is given in terms of ϵ_1, ϵ_2 equivariant parameters on \mathbb{C}^2 (Ω deformation parameters).

AGT relation (Geometric representation theory)

- \bullet There exist an action of the algebra W_n on the direct sum of equivariant cohomology spaces of the moduli space of $U(n)$ instantons on \mathbb{C}^2 , $M(\vec{a}) \simeq \bigoplus_{N=0}^{\infty} H_{\text{equiviv}}(\mathcal{M}(n, N)).$ [Schiffmann, Vasserot; Maulik, Okounkov; Braverman, Finkelberg, Nakajima] Highest weight of M is given in terms of equivariant parameters a of the framing (or vev in gauge theory). Central charge is given in terms of ϵ_1, ϵ_2 equivariant parameters on \mathbb{C}^2 (Ω deformation parameters).
- Torus fixed points in $\bigsqcup_{N=0}^{\infty}\mathcal{M}(n,N)$ label special basis $J_{\vec{\alpha}}\in\mathcal{M}(\vec{a})$, where $\vec{\alpha} = (\alpha_1, \ldots, \alpha_n)$ is *n* tuple of partitions.

$$
W_n\text{-Conformal block} = \sum_{\vec{\alpha}} Z_{\text{Nek}}(\vec{\alpha}, \vec{a}, \vec{\mu}, \vec{\epsilon}).
$$

AGT relation (Geometric representation theory)

- \bullet There exist an action of the algebra W_n on the direct sum of equivariant cohomology spaces of the moduli space of $U(n)$ instantons on \mathbb{C}^2 , $M(\vec{a}) \simeq \bigoplus_{N=0}^{\infty} H_{\text{equiviv}}(\mathcal{M}(n, N)).$ [Schiffmann, Vasserot; Maulik, Okounkov; Braverman, Finkelberg, Nakajima] Highest weight of M is given in terms of equivariant parameters a of the framing (or vev in gauge theory). Central charge is given in terms of ϵ_1, ϵ_2 equivariant parameters on \mathbb{C}^2 (Ω deformation parameters).
- Torus fixed points in $\bigsqcup_{N=0}^{\infty}\mathcal{M}(n,N)$ label special basis $J_{\vec{\alpha}}\in\mathcal{M}(\vec{a})$, where $\vec{\alpha} = (\alpha_1, \ldots, \alpha_n)$ is *n* tuple of partitions.

$$
W_n\text{-Conformal block} = \sum_{\vec{\alpha}} Z_{\text{Nek}}(\vec{\alpha}, \vec{a}, \vec{\mu}, \vec{\epsilon}).
$$

• For special (resonance) parameters ϵ , a, μ functions $Z_{\text{Nek}}(\vec{\alpha}, \vec{a}, \vec{\mu}, \vec{\epsilon})$ become ill defined. Like x/y where $x, y \rightarrow 0$. Corresponding representations become reducible. Irreducible quotient has a basis labeled by n-tuples of partitions with an additional condition.

Plane partitions

In the resonance $a^{(l)}-a^{(l+1)}=(r_l+1)\epsilon_1+(s_l+1)\epsilon_2$, for $1\leq l\leq n-1$ restriction on α looks

$$
\{\alpha^{(1)},\ldots,\alpha^{(n)}|\alpha_i^{(l)}+\eta\geq\alpha_{i+s_i}^{(l+1)},1\leq l\leq n-1\}
$$

Plane partitions

In the resonance $a^{(l)}-a^{(l+1)}=(r_l+1)\epsilon_1+(s_l+1)\epsilon_2$, for $1\leq l\leq n-1$ restriction on α looks

$$
\{\alpha^{(1)},\ldots,\alpha^{(n)}|\alpha_i^{(l)}+\eta\geq\alpha_{i+s_i}^{(l+1)},1\leq l\leq n-1\}
$$

For such $\vec{\alpha}$ we can assign plane partition in $[1, n] \times [1, \infty) - \lambda$

$$
\nu_i=\sum_{l=i}^{n-1}r_l,\qquad \lambda_i=\sum_{l=i}^{n-1}s_l,
$$

Plane partitions with "pit"

We study plane partitions satisfying

1. $\lim_{j\to\infty} a_{i,j} = \nu_i$, 2. $\lim_{i\to\infty} a_{i,j} = \mu_i$, 3. $a_{i,j} = \infty$, iff $(i,j) \in \lambda$,

4. $a_{n+1,m+1} = 0$, where ν, μ, λ are partitions.

Plane partitions with "pit"

We study plane partitions satisfying

The corresponding W algebras we denote by W_{nlm} .

For any set A of plane partitions define its generating function by $\sum_{a \in A} q^{|a|}$. Denote by $\chi_{\lambda,\nu,\mu}^{n,m}(q)$ the generating function of plane partitions which satisfy 1,2,3,4.

For any set A of plane partitions define its generating function by $\sum_{a \in A} q^{|a|}$. Denote by $\chi_{\lambda,\nu,\mu}^{n,m}(q)$ the generating function of plane partitions which satisfy 1,2,3,4.

[Okounkov Vafa Reshetikhin 2003]

$$
\chi_{\lambda,\nu,\mu}(q) = s_{\nu'}(q^{-\rho}) \sum_{\eta} s_{\lambda'/\eta}(q^{-\nu-\rho}) s_{\mu/\eta}(q^{-\nu'-\rho}) \frac{1}{\prod_{k=1}^{\infty} (1-q^k)^k}
$$

For any set A of plane partitions define its generating function by $\sum_{a \in A} q^{|a|}$. Denote by $\chi_{\lambda,\nu,\mu}^{n,m}(q)$ the generating function of plane partitions which satisfy 1,2,3,4.

[Okounkov Vafa Reshetikhin 2003]

$$
\chi_{\lambda,\nu,\mu}(q) = s_{\nu'}(q^{-\rho}) \sum_{\eta} s_{\lambda'/\eta}(q^{-\nu-\rho}) s_{\mu/\eta}(q^{-\nu'-\rho}) \frac{1}{\prod_{k=1}^{\infty} (1-q^k)^k}
$$

 \bullet [MacMahon 1915]

$$
\chi^{n,0}_{\varnothing,\varnothing,\varnothing}(q)=\frac{1}{\prod_{k=1}^n(1-q^k)^k\prod_{k=n+1}^\infty(1-q^k)^n},
$$

For any set A of plane partitions define its generating function by $\sum_{a \in A} q^{|a|}$. Denote by $\chi_{\lambda,\nu,\mu}^{n,m}(q)$ the generating function of plane partitions which satisfy 1,2,3,4.

[Okounkov Vafa Reshetikhin 2003]

$$
\chi_{\lambda,\nu,\mu}(q) = s_{\nu'}(q^{-\rho}) \sum_{\eta} s_{\lambda'/\eta}(q^{-\nu-\rho}) s_{\mu/\eta}(q^{-\nu'-\rho}) \frac{1}{\prod_{k=1}^{\infty} (1-q^k)^k}
$$

 \bullet [MacMahon 1915]

$$
\chi^{n,0}_{\varnothing,\varnothing,\varnothing}(q)=\frac{1}{\prod_{k=1}^n(1-q^k)^k\prod_{k=n+1}^\infty(1-q^k)^n},
$$

Generalization

$$
\chi_{\varnothing,\nu,\lambda}^{n,0}(q) = q^{\sum_{i=1}^{n} (\lambda_i + n - i)(\nu_i + n - i)} a_{\nu + \rho_n}(q^{-\lambda - \rho_n}) \frac{1}{\prod_{k=1}^{\infty} (1 - q^k)^n},
$$

where $a_{\lambda + \rho_n}(x_1, \ldots, x_n) = \det \left(x_i^{\lambda_j + n - j} \right)$.

For any set A of plane partitions define its generating function by $\sum_{a \in A} q^{|a|}$. Denote by $\chi_{\lambda,\nu,\mu}^{n,m}(q)$ the generating function of plane partitions which satisfy 1,2,3,4.

[Okounkov Vafa Reshetikhin 2003]

$$
\chi_{\lambda,\nu,\mu}(q) = s_{\nu'}(q^{-\rho}) \sum_{\eta} s_{\lambda'/\eta}(q^{-\nu-\rho}) s_{\mu/\eta}(q^{-\nu'-\rho}) \frac{1}{\prod_{k=1}^{\infty} (1-q^k)^k}
$$

 \bullet [MacMahon 1915]

$$
\chi^{n,0}_{\varnothing,\varnothing,\varnothing}(q)=\frac{1}{\prod_{k=1}^n(1-q^k)^k\prod_{k=n+1}^\infty(1-q^k)^n},
$$

Generalization

$$
\chi^{n,0}_{\varnothing,\nu,\lambda}(q)=q^{\sum_{i=1}^n(\lambda_i+n-i)(\nu_i+n-i)}a_{\nu+\rho_n}(q^{-\lambda-\rho_n})\frac{1}{\prod_{k=1}^\infty(1-q^k)^n},
$$

where
$$
a_{\lambda+\rho_n}(x_1,\ldots,x_n) = \det \left(x_i^{\lambda_j+n-j}\right)
$$
.
 $\chi_{\emptyset,\nu,\lambda}^{n,0}(q)$ are characters of W_n algebras.

• Due to "pit" condition

 $\nu = (\nu_1, \ldots, \nu_n) \longleftrightarrow$ finite dimension representation of \mathfrak{gl}_n $\mu = (\mu_1, \dots, \mu_m) \longleftrightarrow$ finite dimension representation of \mathfrak{gl}_m λ , $\lambda_{n+1} < m+1 \leftrightarrow$ tensor finite dimension representation of $\mathfrak{gl}_{n|m}$

• Due to "pit" condition $\nu = (\nu_1, \ldots, \nu_n) \longleftrightarrow$ finite dimension representation of \mathfrak{gl}_n $\mu = (\mu_1, \dots, \mu_m) \longleftrightarrow$ finite dimension representation of \mathfrak{gl}_m λ , λ_{n+1} < $m+1$ \longleftrightarrow tensor finite dimension representation of $\mathfrak{gl}_{n|m}$ • Denote $N_i = \nu_i + n - i$, $M_i = \mu_i + n - i$, $A_i = \alpha_i + n - i$. Then A

$$
\chi_{\varnothing,\nu,\mu}^{n,n}(q) = \frac{1}{\prod_{k=1}^{\infty}(1-q^k)^{2n}}\det\Bigl(\sum\nolimits_{A\geq 0}(-1)^sq^{{A\choose 2}}q^{(N_i-M_j)A}\Bigr) = \\ = \sum\nolimits_{\alpha}(-1)^{\sum A_i}q^{\sum{A_i+1\choose 2}}\frac{a_N(q^A)a_M(q^{-A})}{\prod_{k=1}^{\infty}(1-q^k)^{2n}},
$$

• Due to "pit" condition $\nu = (\nu_1, \ldots, \nu_n) \longleftrightarrow$ finite dimension representation of \mathfrak{gl}_n $\mu = (\mu_1, \dots, \mu_m) \longleftrightarrow$ finite dimension representation of \mathfrak{gl}_m λ , λ_{n+1} < $m+1$ \longleftrightarrow tensor finite dimension representation of $\mathfrak{gl}_{n|m}$ • Denote $N_i = \nu_i + n - i$, $M_i = \mu_i + n - i$, $A_i = \alpha_i + n - i$. Then A

$$
\chi_{\varnothing,\nu,\mu}^{n,n}(q) = \frac{1}{\prod_{k=1}^{\infty} (1-q^k)^{2n}} \det \left(\sum_{A \geq 0} (-1)^a q^{\binom{A}{2}} q^{(N_i - M_j)A} \right) = \\ = \sum_{\alpha} (-1)^{\sum A_i} q^{\sum \binom{A_i + 1}{2}} \frac{\partial N(q^A) a_{M}(q^{-A})}{\prod_{k=1}^{\infty} (1-q^k)^{2n}},
$$

Formulas for $\mathfrak{gl}_{m|n}$ characters

$$
s_{\varnothing}(x|y) = 1 = \frac{\prod (1+y_j/x_i)}{\prod (x_i-x_j)\prod (y_i-y_j)} \det \left(\sum_{A\geq 0} (-1)^A x_j^{-A-1+m} y_i^A \right)
$$

=
$$
\sum_{\alpha} (-1)^{\sum \alpha_i} s_{-\alpha}(x) s_{\alpha}(y) \prod (1+y_j/x_i).
$$

[Moens, van der Jeugt 2003], [Cheng Kwon Lam, 2008],

Denote
$$
r = \min\{t | \lambda_{n-t} \ge m - t\}
$$
, $P_i = \lambda_i + (n - m) - i$, $Q_j = \lambda'_j + (m - n) - j$.

$$
\chi_{\mu,\nu,\lambda}^{n,m}(q) = \frac{(-1)^{mn-r}q^{\Delta}}{\prod_{k=1}^{\infty}(1-q^k)^{m+n}} \det \begin{pmatrix} \left(\sum_{a\geq 0}(-1)^aq^{\binom{a+1}{2}}q^{(N_j-M_j)a}\right)_{\substack{1\leq i\leq m\\1\leq j\leq n}}\left(q^{-M_jQ_j}\right)_{\substack{1\leq i\leq m\\1\leq j\leq n}}\\ \left(q^{-N_j(P_j+1)}\right)_{\substack{1\leq i\leq n-r\\1\leq j\leq n}}\right)\\ \qquad = (-1)^{r(m+n)}q^{\Delta}\sum_{\alpha}(-1)^{\sum A_j}q^{\sum {\binom{A_j+1}{2}}\frac{a_N(q^A,q^{-P-1})a_M(q^{-A},q^{-Q})}{\prod_{k=1}^{\infty}(1-q^k)^{m+n}},
$$

Formulas for $\mathfrak{gl}_{m|n}$ characters

$$
s_{\lambda}(x|y) = \frac{(-1)^{mn-r} \prod (1+y_j/x_i)}{\prod (x_i-x_j) \prod (y_i-y_j)} \text{det} \begin{pmatrix} \left(\sum_{A\geq 0}(-1)^{A}x_j^{-A-1+m}y_i^A\right)_{\substack{1\leq i\leq m\\1\leq j\leq n}} & \left(y_i^{Q_j}\right)_{\substack{1\leq i\leq m-r\\1\leq j\leq n}} \\ 0 & 0 \end{pmatrix}.
$$

= $\sum_{\alpha}(-1)^{\sum \alpha_j} s_{\pi+m-r,-\alpha}(x) s_{\alpha,\kappa}(y) \prod (1+y_j/x_i).$

Denote
$$
r = \min\{t | \lambda_{n-t} \ge m - t\}
$$
, $P_i = \lambda_i + (n - m) - i$, $Q_j = \lambda'_j + (m - n) - j$.

$$
\chi_{\mu,\nu,\lambda}^{n,m}(q) = \frac{(-1)^{mn-r}q^{\Delta}}{\prod_{k=1}^{\infty}(1-q^k)^{m+n}} \det \begin{pmatrix} \left(\sum_{a\geq 0}(-1)^aq^{\binom{a+1}{2}}q^{(N_j-M_j)a}\right)_{\substack{1\leq i\leq m\\1\leq j\leq n}}\left(q^{-M_jQ_j}\right)_{\substack{1\leq i\leq m\\1\leq j\leq n}}\\ \left(q^{-N_j(P_j+1)}\right)_{\substack{1\leq i\leq n-r\\1\leq j\leq n}}\right)\\ \qquad = (-1)^{r(m+n)}q^{\Delta}\sum_{\alpha}(-1)^{\sum A_j}q^{\sum {\binom{A_j+1}{2}}\frac{a_N(q^A,q^{-P-1})a_M(q^{-A},q^{-Q})}{\prod_{k=1}^{\infty}(1-q^k)^{m+n}},
$$

Formulas for $\mathfrak{gl}_{m|n}$ characters

$$
s_{\lambda}(x|y) = \frac{(-1)^{mn-r} \prod (1+y_j/x_i)}{\prod (x_i-x_j) \prod (y_i-y_j)} \text{det} \begin{pmatrix} \left(\sum_{A\geq 0}(-1)^{A}x_j^{-A-1+m}y_i^A\right)_{\substack{1\leq i\leq m\\1\leq j\leq n}} & \left(y_i^{Q_j}\right)_{\substack{1\leq i\leq m-r\\1\leq j\leq n}} \\ 0 & 0 \end{pmatrix}.
$$

= $\sum_{\alpha}(-1)^{\sum \alpha_j} s_{\pi+m-r,-\alpha}(x) s_{\alpha,\kappa}(y) \prod (1+y_j/x_i).$

Conjecturally there exist an equivalence of Drinfeld–Kohno or Kazhdan–Lusztig type between $\mathrm{W}_{n|m}$ and product of quantum groups $\mathit{U}_q\mathfrak{gl}_{n|\mathit{m}}\otimes\mathit{U}_{q'}\mathfrak{gl}_{n}\otimes\mathit{U}_{q''}\mathfrak{gl}_{m}$ for certain q, q', q'' .

 $U_{\vec{q}}(\vec{\mathfrak{gl}}_1)$ denotes quantum toroidal \mathfrak{gl}_1 . This algebra depend on 3 parameters q_1, q_2, q_3 such that $q_1q_2q_3 = 1$. This algebra is Ding-Iohara algebra for the function

$$
g(z,w)=\frac{(z-q_1w)(z-q_2w)(z-q_3w)}{(z-q_1^{-1}w)(z-q_2^{-1}w)(z-q_3^{-1}w)}.
$$

 $U_{\vec{q}}(\vec{\mathfrak{gl}}_1)$ denotes quantum toroidal \mathfrak{gl}_1 . This algebra depend on 3 parameters q_1, q_2, q_3 such that $q_1q_2q_3 = 1$. This algebra is Ding-Iohara algebra for the function

$$
g(z,w)=\frac{(z-q_1w)(z-q_2w)(z-q_3w)}{(z-q_1^{-1}w)(z-q_2^{-1}w)(z-q_3^{-1}w)}.
$$

This algebra has Fock representations $\mathcal{F}_{u}^{(i)}$, with central charge $q_{i}^{1/2}$ $i^{1/2}$, $i = 1, 2, 3$ and u is a spectral parameter.

 $U_{\vec{q}}(\vec{\mathfrak{gl}}_1)$ denotes quantum toroidal \mathfrak{gl}_1 . This algebra depend on 3 parameters q_1, q_2, q_3 such that $q_1q_2q_3 = 1$. This algebra is Ding-Iohara algebra for the function

$$
g(z,w)=\frac{(z-q_1w)(z-q_2w)(z-q_3w)}{(z-q_1^{-1}w)(z-q_2^{-1}w)(z-q_3^{-1}w)}.
$$

- This algebra has Fock representations $\mathcal{F}_{u}^{(i)}$, with central charge $q_{i}^{1/2}$ $i^{1/2}$, $i = 1, 2, 3$ and u is a spectral parameter.
- The image of $U_{\vec{q}}(\mathfrak{gl}_1)$ in the $\text{End}\left(\mathcal{F}_{\omega_1}^{(1)}\otimes\cdots\otimes\mathcal{F}_{\omega_n}^{(1)}\right)$ is q -deformed W_n algebra. [Feigin Hoshino Shibahara Shiraishi Yanagida 2010]

 $U_{\vec{q}}(\vec{\mathfrak{gl}}_1)$ denotes quantum toroidal \mathfrak{gl}_1 . This algebra depend on 3 parameters q_1, q_2, q_3 such that $q_1q_2q_3 = 1$. This algebra is Ding-Iohara algebra for the function

$$
g(z,w)=\frac{(z-q_1w)(z-q_2w)(z-q_3w)}{(z-q_1^{-1}w)(z-q_2^{-1}w)(z-q_3^{-1}w)}.
$$

- This algebra has Fock representations $\mathcal{F}_{u}^{(i)}$, with central charge $q_{i}^{1/2}$ $i^{1/2}$, $i = 1, 2, 3$ and u is a spectral parameter.
- The image of $U_{\vec{q}}(\mathfrak{gl}_1)$ in the $\text{End}\left(\mathcal{F}_{\omega_1}^{(1)}\otimes\cdots\otimes\mathcal{F}_{\omega_n}^{(1)}\right)$ is q -deformed W_n algebra. [Feigin Hoshino Shibahara Shiraishi Yanagida 2010]
- The proof is based on the fact that image $\mathit{U}_{\vec{q}}(\mathfrak{\ddot{gl}_1})$ in the $\mathrm{End}\left(\mathcal{F}_{u_1}^{(1)}\otimes\mathcal{F}_{u_2}^{(1)}\right)$ commutes with two screening operators

$$
S^{11}_{+} = \oint S^{11}_{+}(z) \mathrm{d} z, \quad S^{11}_{-} = \oint S^{11}_{-}(z) \mathrm{d} z.
$$

For the case $\mathcal{F}^{(1)}_{u_1}\otimes\cdots\otimes \mathcal{F}^{(1)}_{u_n}$ we have two commuting systems of operators which corresponds corresponding to quantum group \mathfrak{gl}_n

$$
\mathfrak{S}_1 = \left\{ \left(S^{11}_{-} \right)_{i,i+1} | 0 < i < n \right\}, \quad \mathfrak{S}_2 = \left\{ \left(S^{11}_{+} \right)_{i,i+1} | 0 < i < n \right\}.
$$

q-deformed $\mathrm{W}_{n|m}$ algebra is the image of $U_{\vec{q}}(\mathfrak{\ddot{gl}}_1)$ in the $\text{End}\left(\mathcal{F}_{u_1}^{(1)}\otimes\cdots\otimes\mathcal{F}_{u_n}^{(1)}\otimes\mathcal{F}_{u_{n+1}}^{(2)}\otimes\cdots\otimes\mathcal{F}_{u_{n+m}}^{(2)}\right)\!.$ For the tensor product $\text{End}\left(\mathcal{F}_{\nu_1}^{(1)}\otimes\mathcal{F}_{\nu_2}^{(2)}\right)$ we have one fermionic screening

operator $S^{12} = \oint S^{12}(z) \mathrm{d} z$.

q-deformed $\mathrm{W}_{n|m}$ algebra is the image of $U_{\vec{q}}(\mathfrak{\ddot{gl}}_1)$ in the $\text{End}\left(\mathcal{F}_{u_1}^{(1)}\otimes\cdots\otimes\mathcal{F}_{u_n}^{(1)}\otimes\mathcal{F}_{u_{n+1}}^{(2)}\otimes\cdots\otimes\mathcal{F}_{u_{n+m}}^{(2)}\right)\!.$ For the tensor product $\text{End}\left(\mathcal{F}_{\nu_1}^{(1)}\otimes\mathcal{F}_{\nu_2}^{(2)}\right)$ we have one fermionic screening operator $S^{12} = \oint S^{12}(z) \mathrm{d} z$.

Decompose the corresponding screening operators on 3 systems

$$
\mathfrak{S}_1 = \left\{ \left(S^{11}_{-} \right)_{i,i+1} | 0 < i < n \right\}, \quad \mathfrak{S}_2 = \left\{ \left(S^{22}_{+} \right)_{j,j+1} | n < j < m+n \right\},\
$$

$$
\mathfrak{S}_3 = \left\{ \left(S^{11}_{+} \right)_{i,i+1}, \left(S^{12}_{-} \right)_{n,n+1}, \left(S^{22}_{-} \right)_{j,j+1} | 0 < i < n, n < j < n+m \right\}.
$$

Operators from different \mathfrak{S}_k commutes. Systems $\mathfrak{S}_1, \mathfrak{S}_2, \mathfrak{S}_3$ corresponds to quantum groups \mathfrak{gl}_n , \mathfrak{gl}_m , $\mathfrak{gl}_{n|m}$.

q-deformed $\mathrm{W}_{n|m}$ algebra is the image of $U_{\vec{q}}(\mathfrak{\ddot{gl}}_1)$ in the $\text{End}\left(\mathcal{F}_{u_1}^{(1)}\otimes\cdots\otimes\mathcal{F}_{u_n}^{(1)}\otimes\mathcal{F}_{u_{n+1}}^{(2)}\otimes\cdots\otimes\mathcal{F}_{u_{n+m}}^{(2)}\right)\!.$ For the tensor product $\text{End}\left(\mathcal{F}_{\nu_1}^{(1)}\otimes\mathcal{F}_{\nu_2}^{(2)}\right)$ we have one fermionic screening operator $S^{12} = \oint S^{12}(z) \mathrm{d} z$.

Decompose the corresponding screening operators on 3 systems

$$
\mathfrak{S}_1 = \left\{ \left(S^{11}_{-}\right)_{i,i+1} | 0 < i < n \right\}, \quad \mathfrak{S}_2 = \left\{ \left(S^{22}_{+}\right)_{j,j+1} | n < j < m+n \right\},\
$$

$$
\mathfrak{S}_3 = \left\{ \left(S^{11}_{+}\right)_{i,i+1}, \left(S^{12}_{-}\right)_{n,n+1}, \left(S^{22}_{-}\right)_{j,j+1} | 0 < i < n, n < j < n+m \right\}.
$$

Operators from different \mathfrak{S}_k commutes. Systems $\mathfrak{S}_1, \mathfrak{S}_2, \mathfrak{S}_3$ corresponds to quantum groups \mathfrak{gl}_n , \mathfrak{gl}_m , $\mathfrak{gl}_{n|m}$.

q-deformed $\mathrm{W}_{n|m|k}$ algebra is the image of $U_{\vec{q}}(\tilde{\mathfrak{gl}}_1)$ in the $\text{End}\left(\mathcal{F}_{u_1}^{(1)}\otimes\cdots\otimes\mathcal{F}_{u_n}^{(1)}\otimes\mathcal{F}_{u_{n+1}}^{(2)}\otimes\cdots\otimes\mathcal{F}_{u_{n+m}}^{(2)}\otimes\mathcal{F}_{u_{n+m+1}}^{(3)}\otimes\cdots\otimes\mathcal{F}_{u_{n+m+k}}^{(3)}\right)$ Screening operators form three quantum groups $\mathfrak{gl}_{n|m}$, $\mathfrak{gl}_{m|k}$, $\mathfrak{gl}_{k|n}$.

q-deformed $\mathrm{W}_{n|m}$ algebra is the image of $U_{\vec{q}}(\mathfrak{\ddot{gl}}_1)$ in the $\text{End}\left(\mathcal{F}_{u_1}^{(1)}\otimes\cdots\otimes\mathcal{F}_{u_n}^{(1)}\otimes\mathcal{F}_{u_{n+1}}^{(2)}\otimes\cdots\otimes\mathcal{F}_{u_{n+m}}^{(2)}\right)\!.$ For the tensor product $\text{End}\left(\mathcal{F}_{\nu_1}^{(1)}\otimes\mathcal{F}_{\nu_2}^{(2)}\right)$ we have one fermionic screening operator $S^{12} = \oint S^{12}(z) \mathrm{d} z$.

Decompose the corresponding screening operators on 3 systems

$$
\mathfrak{S}_1 = \left\{ \left(S^{11}_{-} \right)_{i,i+1} | 0 < i < n \right\}, \quad \mathfrak{S}_2 = \left\{ \left(S^{22}_{+} \right)_{j,j+1} | n < j < m+n \right\},\
$$

$$
\mathfrak{S}_3 = \left\{ \left(S^{11}_{+} \right)_{i,i+1}, \left(S^{12}_{-} \right)_{n,n+1}, \left(S^{22}_{-} \right)_{j,j+1} | 0 < i < n, n < j < n+m \right\}.
$$

Operators from different \mathfrak{S}_k commutes. Systems $\mathfrak{S}_1, \mathfrak{S}_2, \mathfrak{S}_3$ corresponds to quantum groups \mathfrak{gl}_n , \mathfrak{gl}_m , $\mathfrak{gl}_{n|m}$.

q-deformed $\mathrm{W}_{n|m|k}$ algebra is the image of $U_{\vec{q}}(\tilde{\mathfrak{gl}}_1)$ in the $\text{End}\left(\mathcal{F}_{u_1}^{(1)}\otimes\cdots\otimes\mathcal{F}_{u_n}^{(1)}\otimes\mathcal{F}_{u_{n+1}}^{(2)}\otimes\cdots\otimes\mathcal{F}_{u_{n+m}}^{(2)}\otimes\mathcal{F}_{u_{n+m+1}}^{(3)}\otimes\cdots\otimes\mathcal{F}_{u_{n+m+k}}^{(3)}\right)$ Screening operators form three quantum groups $\mathfrak{gl}_{n|m}$, $\mathfrak{gl}_{m|k}$, $\mathfrak{gl}_{k|n}$. • In the limit $q \to 1$ all this $W_{n|m|k}$ algebras are quotients of $W_{\infty}(c)$. There is no other quotients of $W_{\infty}(c)$ defined by screening construction. [Litvinov, Spodyneiko 2016]

Another algebraic constructions: quantum Drinfeld-Sokolov reduction; coset construction.

- Another algebraic constructions: quantum Drinfeld-Sokolov reduction; coset construction.
- Relation to supersymmetric gauge theories. "Pit" condition means that we study monomial ideals $I \subset \mathbb{C}[x, y, z]$, such that $x^n y^m z^k \in I$.