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Let         be a simply-laced simple Lie algebra.



String theory predicts existence of a remarkable

quantum field theory in six dimensions

labeled by     .

This theory,  often called theory X(   ),

is a conformal field theory with (2,0) supersymmetry.



Theory              is remarkable, in part, 

because it is expected to play an important role in pure mathematics.

     



We have had evidence, for a while, that theory           ,                  

should have applications to:

Geometric Langlands 

Program

Knot Categorification

Program



An obstacle to making progress is the fact that

the theory             is hard to understand, even for physicists,

because it has no classical limit.



AGT correspondence,

after Alday, Gaiotto and Tachikawa,

serves well to illustrate both the appeal of the theory,

and the difficulty of working with it.



is a conformal block on the Riemann surface                               

of a conformal vertex operator algebra

which is also labeled by       : 

The AGT correspondence states 

that the partition function of the theory          ,

on a six manifold of the form      

        -algebra 



The correspondence further
 relates defects of the theory             to

 vertex operators of the          -algebra,

inserted at points on     .

x

x
xx

x x



If one is to take the conjecture at its face value,

it is hard to make progress on it. 

Since we do not know how to describe the theory            ,

we cannot formulate or evaluate its partition function in any generality.

We do not even have

a well defined statement of the correspondence,

except in rare examples.

(Regardless, it’s physical implications are extremely important.)



It turns out that there is an embedding of both sides 

of the AGT correspondence

into bigger theories, 

which allows us to make 

 the correspondence mathematically precise in a very general setting, 

and to prove it.



On the W-algebra side, one replaces the ordinary W-algebra

by its “q-deformation”.

The deformed W-algebra is the one defined by

Frenkel and Reshetikhin

in the 90’s.



One replaces the 6-dimensional theory           ,

which is a point particle theory,

by a 6-dimensional string theory which contains it,

“the little string theory.”



The little string theory is labeled by

the same ADE lie algebra g.

It can be viewed as a one parameter deformation 

of  theory          .

The parameter is the characteristic size of the string.

In the limit this vanishes, one recovers the theory           ,       

which is a point particle theory.



On each side of the correspondence, one replaces a theory with 

 conformal symmetry,

with its mass deformation. 

The conformal symmetry is broken in either case,

but in a canonical way.



The correspondence is between 

q-conformal blocks of the deformed          -algebra on      ,  

and 

the partition function of the 

6d little string theory on 

             ,

where the Riemann surface              

can be taken to be either a cylinder, or a torus.



We will take       to be a cylinder, since the torus case

follows by additional identifications.

x x
x

x



The partition function of the g-type little string on             ,

with arbitrary collections of defects,

turns out to have a precise mathematical formulation.



For co-dimension two defects at points on   n   

the partition function of    g-type little string theory on 

   

it is the equivariant, K-theoretic instanton partition function 

of a certain   g-type quiver gauge theory on        .



Which quiver gauge theory we get on          depends 

on the choice of co-dimension two defects of

the six dimensional theory on     .



The 6d theory, turns out to localize to

the theory on its defects.

The quiver gauge theory

is simply the theory 

on the defects of little string theory,

at points on        and filling the       ,



A consequence is that the 

partition function of the 6d little string 

is the  K-theoretic Nekrasov partition function 

of the gauge theory on its defects.



One gets the K-theoretic instanton partition function, 

rather than the more obvious cohomological one, due to a stringy effect.

             



x x
x

These turn the  theory on the defects 

to a five dimensional gauge theory

on S^1(R)xR^.

(the      is the T-dual of the circle in     ).

In a string theory,

one has to include the winding modes of strings around C.

x



Recall that the choice of defects

in the little string theory,

corresponds to the 

choice vertex operators

of the deformed           -algebra.

x x
x

x



Thus, the mathematical statement of the correspondence 

is between:

q-deformed conformal blocks

of  the          -algebra with collection of vertex operators

at points on       ,

and

K-theoretic instanton partition function

of a corresponding    g-type quiver gauge theory on      .



This relation can be both spelled out  

and proven.



This fact relies on using little string theory, 

rather than the theory    X(g) to which it reduces in the conformal limit.

In the point particle limit, 

the theory on the defects

has no known direct description.

In particular, its partition function is not computed 

by instanton counting of any known kind.



In the rest of the talk, I will describe this in more detail.

Then, I will describe another application of little string theory,

 to the geometric Langlands program.



To define the g  -type little string theory on 

 

                        

one starts with the 10-dimensional IIB string theory on 

                                     

where       is the ADE surface singularity of type g.



, the ADE surface of type     ,

is asymptotically, locally a flat complex 2-fold,

obtained by resolving a 

  singularity.

    is the discrete subgroup of              ,

related to        by McKay correspondence.



The resolution of the singularity at the origin of

 results in a collection of vanishing 2-cycles intersecting according to

the Dynkin diagram of g.



In the one’s first course on string theory,

one learns how to formulate the 10d string theory in this setting.



The 6d little string theory,

is a six dimensional string theory

by taking the limit of IIB string theory on 

where one keeps only the degrees of freedom

supported near the singularity

at the origin of       .

The limit involves sending the string coupling constant to zero,

but keeping the characteristic size of the 

IIB string finite.



The defects of little string theory originate as

 D-branes of the ten dimensional string,

which survive the limit.



In string theory on 

the defects we need are D5 branes supported on 

(non-)compact 2-cycles in       ,

at points on     ,  and fill R^4.



The (low energy) theory on the D5 branes is a 

 quiver gauge theory

with quiver diagram based on the Dynkin diagram of g:

V1

W1

V2

W2



       In the quiver,

for each node of the Dynkin diagram of 

one gets a pair of vector spaces,   Va and

Wa

dim(Wa) = ma

dim(Va) = da

Va



The dimension vectors

 are determined by the classes of 2-cycles in Y 

which support the D5 branes,

    

dim(Wa) = ma

dim(Va) = da

Wa

Va



Recall that aspects of geometry of  the  ADE surface   Y

are captured by representation theory of g:

                      viewed as a lattice with an inner product coming from the 

intersection form, is the same as root lattice of g                 

                           is the same as weight lattice of g  

   

 



   come from D5 branes supported on the a-th vanishing two cycle,

which in turn corresponds to a simple root of g.

  come from D5 branes wrapping the dual non-compact two-cycle,

corresponding to a fundamental weight of g:



The gauge group of the quiver gauge theory

 originates from the gauge theory on D5 branes

supported on compact two-cycles in Y;

The matter fields come from strings at the intersections of the branes.

The flavor symmetry group 

comes from the gauge symmetry group of the non-compact D5 branes.



We need not an arbitrary quiver gauge theory, 

but rather those that describe defects in the 6d little string on        

which preserve 4d conformal invariance 

in the (low energy) limit.

The answer can be stated as follows….



To get a single puncture on C in the conformal limit,

pick a collection of n+1 weights of g                      

                                                                                 

such that every         is in the Weyl group orbit 

a fundamental weight of g, and         

If one wishes to get a “full puncture”,  the collection must in addition 

span the weight lattice.



Corresponding to this is a collection 

of (non-compact) 2-cycles in X

on which the D5 branes are supported.



This leads to a quiver gauge theory with the 

gauge and global symmetry groups

determined from the equation:

          is the number of          ’s from the orbit of        

the fundamental weight             and   one solves for 

     

,



If we consider several defects  on         instead of one, the ranks of

the gauge and flavor symmetry group simply add. 



Nekrasov formulated the 

 K-theoretic equivariant instanton partition function

 of the gauge theory on            ,      ,

as the equivariant Euler characteristic

of an appropriate bundle over the moduli space of G instantons on M.



labeled by rk(g)-tuples of  2d Young diagrams,

with one 2d Young diagram, for each U(1) factor in G. 

Localization with respect to 

 lets one express the partition function as a

sum over the fixed points in instanton moduli space,



The contribution of each fixed point 

can be read off from the quiver,

as a product of contributions of the nodes and the arrows.

In the end we sum over all the fixed points.

V1

W1

V2

W2



The answer  

depends, in addition to the instanton counting parameter \tau,

on the equivariant parameters:

for rotations of two complex planes in M=C^2,

   for maximal torus of the gauge group G

for maximal torus of the global symmetry group G_F



The parameters which enter the gauge theory partition function

have a geometric interpretation in string theory.



The equivariant parameters we labeled by     ,

associated to        ,       

are the positions, on      , of  D5-branes on non-compact cycles.

The equivariant parameters labeled by        

associated to       ,

are the positions, on      , of D5-branes on compact cycles.

         are the equivariant parameters associated to rotations 

of                      .



As soon as we resolve the singularities of     ,

by giving the two-cycles non-zero area,

all the relevant dynamics of the little string theory

is localized on the D5-branes.

are the moduli of     ,

associated with sizes of vanishing 2-cycles.

The instanton partition function 

is the partition function of little string theory  on       ,      

with the corresponding collection of defects  on        



Now, let me describe the deformed              -algebra.

corresponding to a simple Lie algebra      .

 It is defined by Frenkel and Reshetikhin

in the “free-field formalism”.

We will specialize to the simply laced case, 

relevant for now.



One starts with a

 deformed Heisenberg algebra               , 

      for each node of the Dynkin diagram,     

depending on two parameters q, and t,  with generators

where                 is a deformed Cartan matrix

 with commutation relations



For each weight                     of the Cartan subalgebra, 

we get the Fock representation of the Heisenberg algebra

with  state           as a generator:

for



The                algebra itself is defined 

as the set of vertex operators which

commute with the screening charges         

acting on the Heisenberg vacuum        

where

are the screening vertex operators. 



with central charge depending on     .

Taking  the limit

the deformed             algebra becomes the ordinary one

containing the Virasoro algebra as a subalgebra, 



General q-conformal blocks of the W-algebra   

are expected to be correlators of vertex operators,

where                are built out of Heisenberg algebra generators



There is as of now, neither a math nor physics definition 

of what it means to be a q-deformed chiral vertex operator algebra.

Correspondingly, Frenkel and Reshetikhin did not 

define q-deformations of general vertex operators 

of the W-algebra.

My student Nathan Haouzi and I showed the following….



Given a collection of weights  

with weight         associated to a point          on the Riemann surface, 

 consider the operator

satisfying the conditions given earlier,



and fundamental weight operators,

where                  are normal ordered products of simple root 

which naturally “quantize” the classical Lie algebra relations, e.g.



In particular, in the limit in which the q-deformation goes away,

the vertex operators 

becomes the primary vertex operators 

of the conformal               algebra, in free field formalism.

with        and        fixed 



We expect there is a natural definition 

of the deformed chiral vertex operator algebra

 under which these are the primary operators.

(This natural definition should be based on quantum K-theory, 

and a class of  three dimensional gauge theories

which will appear later in the talk.)



The corresponding q-correlators

are in fact contour integrals, since

To specify the q-conformal block, we need to specify the contour.



One can show that the choices of contours

(which one can make explicit), 

are parameterized by choices of splitting the numbers of screening charges

such that the q-conformal block  

when evaluated by residues….



… equals the gauge theory partition function,

The choice of contour corresponds to a choice of parameterization of

the G-equviariant parameters of the instanton partition function as

One identifies the instanton counting parameter with 

the weight of the  Verma module     .



The relation between the

q-conformal blocks

of  the          -algebra on       ,

and

K-theoretic instanton partition function

of the corresponding    g-type quiver gauge theory

is simple and direct.



 The sum over the poles

in the contour prescription to evaluate the conformal block 

is the sum over instantons, term by term: 



Another application of little string theory is

to geometric Langlands correspondence.



The geometric Langlands correspondence

was formulated by

Beilinson and Drinfeld

in early ’90s preprint. 

In the same work,  they explained that 

one can phrase the correspondence 

in the language of 2d conformal field theory.

(This was further developed by Frenkel, Feigin and others.)  



Let          and      be a Langlands dual pair of Lie algebras.



Geometric Langlands correspondence 

can be interpreted as the relation 

between conformal blocks on a Riemann surface      :

The electric side are the conformal blocks of the affine current algebra  

  at the critical level                (infinite coupling).  

        

On the magnetic side, we get conformal blocks of the

      

algebra in the classical,                , limit.



Aspects of the geometric Langlands correspondence 

were proven in this context by

Belinson and Drinfeld,

in their original paper

and 

in later works of 

Frenkel with Gaitsgory and Vilonen.

 



There are two ways in which one may try to generalize this.

First, it is natural to deform away from 

the critical level      or equivalently,  to finite     .

Second, it is natural to replace the conformal chiral algebras by their 

q-deformed counterparts.



The first deformation

is the “quantum Langlands correspondence.”

 In the abelian case, it was proved by Polishchuk and Rothstein.

When g=    ,

some partial results were obtained by 

Feigin, Frenkel and Stoyanovsky, Teschner, and others.



It turns out that one can 

implement both generalizations,

and moreover it is easiest to do it 

at the same time.



In a joint work with E. Frenkel and A. Okounkov,

we formulate the quantum q-Langlands correspondence,

for any Lie algebra        and its Langlands dual       .

We outline the proof of the correspondence, 

in the simply laced case.



We conjecture the correspondence between

deformed conformal blocks of the 

quantum affine current algebra       

corresponding to          at level        ,

and the q-conformal blocks of the deformed W-algebra

The parameters are related by:



x x
x

x

Take the Riemann surface C   which is a cylinder, 

with punctures at distinct points     .

To a puncture at        associate      

a finite dimensional representation           of 

For simplicity,  take         to be one of the fundamental representations 

of         ,  labeled by the nodes of its Dynkin diagram.



On the electric, affine current algebra side, 

one considers the usual q-conformal blocks of the quantum affine algebra,

     

corresponds to the  finite dimensional representation

of            attached to       .

’s are the  vertex operators  of          .        

constructed by I. Frenkel and Reshetikhin.



is the magnetic, degenerate, vertex operator of the                algebra       

On the magnetic,       -algebra side, 

one considers q-correlators of the form

    

defined by E. Frenkel and Reshetikhin.

It is labeled by the fundamental co-weight of     , 

which is, by Langlands duality,

the highest weight of the representation           of  the electric group        ,

we attached to      .



The choice of numbers of magnetic screening charge        -insertions 

in the        -algebra q-conformal block corresponds to restricting the     

              -valued                  block to the subspace of the weight



x x
x

x

The  states           and            ,

generate  Verma module representations of the algebras.

Their weights are not independent:



To specify the q-conformal block, on the W-algebra side, 

we need to choose the contour of integration.

On the affine current algebra side, we need to specify the 

the  Verma modules one gets in the intermediate channels.



The q-conformal blocks of 

chiral algebras

arize as partition functions of little string theory,

with defects.

electric magnetic



For the current purpose,

the relevant objects in little string theory 

are not the co-dimension two defects of the theory

we studied so far,

but rather the co-dimension four defects.



For now, let      be simply laced, so that



Take the little string theory associated 

to the simply laced Lie algebra g, 

on 

just as before.



The defects are strings supported at points on 

and on one of the two complex planes in 

In the present notation, this is the plane rotated by     .



From perspective of IIB string on 

the defect strings come from D3 branes,

supported on 2-cycles in       , and the chosen 2-plane in       .



x x
x

x

are the positions of non-compact D3 branes on        

The insertion points of vertex operators,

The class of a cycle in          that supports the

D3 brane is the highest weight of the corresponding representation.

The weight of the Verma module          is the Kahler modulus of  Y.



The partition function of the 6d little string theory with 

these classes of defects, for generic      , 

localizes to the partition function of the gauge theory on the defect.

  



The theory on these defects is 

a tree dimensional quiver gauge theory, with N=4 supersymmetry

on               .

The quiver is  based on the Dynkin diagram of g.

V1

W1

V2

W2

V1

W1

V2

W2



The quiver gauge group and the matter content

are determined by the weight

V1

W1

V2

W2

of the subspace the q-conformal blocks of                  live in



The dimension vectors , 

are the classes of 2-cycles in 

which support the D3 branes.



The partition function

of the 3d N=4 quiver gauge theory on   

          

            

is computed by 

quantum K-theory

of a Nakajima quiver variety X:

X is the Higgs branch of the gauge theory.



Quantum K-theory of symplectic resolutions, 

including Nakajima quiver varieties,

was developed recently by Okounkov with Maulik and Smirnov.

 Roughly, the theory counts quasi-maps to X, 

working equivariantly with respect to



The fact that quantum K-theory computes the partition

function of little string theory on 

with 2d defects on C

is analogous to the fact that the partition function of

little string theory with 4d defects on CxC

is computed by 

K-theoretic instanton counting.



The most basic object of quantum K-theory is the 

“vertex function”.

Vertex function is a vector which “counts” (quasi-)maps

from  C  to X  .

The choice of a component of         has to do with 

the conditions imposed on the maps at infinity of         .



The components of the vertex function of X are the

                  algebra q-conformal blocks

To define the  W-algebra blocks requires the choice of contour of integration,

coming from                               ,

                     

There is a choice such that, computing the integral by residues, 

we get  the vertex function components.



A way to characterize the 

conformal blocks of the affine Lie algebra 

is as solutions to Kniznik-Zamolodchikov equation

analytic in a chamber 

 corresponding to

how we take the insertion points         to infinity.



The deformation of this equation,

corresponding to the quantum affine algebra

is a difference equation, 

the quantum Kniznik-Zamolodchikov equation,

discovered by I. Frenkel and Reshetikhin. 



A key result of quantum K-theory,

due to Maulik and Okounkov,

 

is that the vertex function of X

solves the quantum Kniznik-Zamolodchikov equation 

corresponding to

q-conformal block



More precisely,  from

(by differentiating with respect to         ’s, 

or placing insertions at              ),

we can generate the fundamental solution 

to the qKZ equation.



The solutions the vertex function 

produces are not themselves the                    conformal blocks,

because        ,

is not holomorphic in any one chamber     ,

of the parameter space.

 



Instead, there is a linear change of basis,

depending on a chamber         ,

that does the job.

such that            are holomorphic in           and

generate 

                 conformal blocks.



The choice of basis we need to get  

  

turns out to have a geometric meaning:

It is the

elliptic stable basis  

of the Nakajima quiver variety X,

recently discovered in a joint work with Andrei Okounkov.



The elliptic stable basis 

gives a basis of elliptic cohomology of X,

generalizing the stable basis in cohomology and K-theory

due to Maulik and Okounkov.



The elliptic stable envelope provides an explicit map between the 

q-conformal blocks of

and

algebras.



To extend this to non-simply laced groups,

where 

 one uses the fact that the non-simply laced Lie algebra 

      can be obtained from a simply laced Lie algebra        ,

using an outer automorphism H of        :



v v

v

v

v

vv

v

v
H acts as an involution of the Dynkin diagram of      :



One studies little string theory  of type 

on 

with a twist 

which ends up permuting the nodes of the Dynkin diagram

by a generator of H,

as we go once  around the origin of the complex       plane 

which supports the defects.



This implies that correspondence between 

q-conformal blocks of

and

should follow by generalizing 

the elliptic stable basis to the H-equivariant setting.

for non-simply laced 

,



An important  generalization 

of the geometric Langlands program 

is to include ramifications.

This corresponds to including 

 D5 brane defects from the first half of the talk.

The relevant variety X  

in this case

is a      -type “hand-saw” quiver variety,

the Higgs branch of the 3d N=2 gauge theory 

on D3 branes in presence of D5 branes.



As Witten and Kapustin explained,

the geometric Langlands correspondence

is related to 

S-duality of 

N=4 super-Yang-Mills theory.



Deep understanding of 

the geometric Langlands correspondence

should come from 

a deep understanding of S-duality.



Many aspects of S-duality

can be understood within N=4 SYM theory,

or using the six dimensional theory X(g)

compactified on a two-torus.



It was shown by Vafa in ‘97 that one can derive

S-duality of N=4 SYM theory 

from T-duality in

(little) string theory.

This explains why one is able to make progress on the problem,

in the context of the 

quantum q-Langlands correspondence.


