Nikolay Gromov

Based on
N. G., V. Kazakov, S. Leurent, D. Volin 1305.1939 (PRL), 1405.4857 (JHEP)
M. Alfimov, N. G., V. Kazakov 1408.1042 (JHEP)
N. G., F. Levkovich-Maslyuk 1601.05679
N.G., F. Levkovich-Maslyuk, G. Sizov 1507.04010 (PRL)
N.G., F. Levkovich-Maslyuk, G. Sizov 1504.06640 (JHEP)
M. Alfimov, N.G., G. Sizov to appear

Paris, 2016

Integrability in gauge theory

Lipatov Faddeev,Korchemsky

Minahan,Zarembo, Beisert,Kristijanssen,Staudacher

Bena,Polchinski,Roiban Kazakov,Marshakov, Minahan, Zarembo, Frolov, Tseytlin Schafer-Nameki
Beisert,Kazakov,Sakai,Zarembo NG,Vieira

$\underline{N=4 S Y M}$

The "simplest" generalization of QCD:
$S=\frac{1}{4 g_{Y M}^{2}} \int d^{4} x \operatorname{Tr}\left(F_{\mu \nu} F^{\mu \nu}+\ldots\right) \begin{aligned} & \text { Plus extra scalar fields } \\ & \text { and fermions }\end{aligned} \Phi_{1}, \ldots, \Phi_{6}$
Parameters: $\quad \lambda=g_{Y}^{2}{ }_{M} N_{c}$ and $N_{c}=\infty$

Symmetries:
Lorentz: $\quad s o(3,1)$
Conformal: $\operatorname{so}(4,2) \operatorname{so}(6)$ - rotation of the scalars
$s u(2,2) \quad s u(4)$
Super (graded) Lie algebra:
$s u(2,2 \mid 4)$

New type of the Integrable structure

Baxter equation for the spectrum of $\mathrm{SU}(2) \mathrm{XXX}$ spin chain

$$
T(u) Q(u)+(u+i / 2)^{L} Q(u-i)+(u-i / 2)^{L} Q(u+i)=0
$$

Two solutions: polynomial $Q_{1} \sim u^{S}$ and $Q_{2} \sim u^{L-S}$
Satisfy Wronskian relation:
$\left.\begin{array}{ll}Q_{1}\left(u+\frac{i}{2}\right) & Q_{2}\left(u+\frac{i}{2}\right) \\ Q_{1}\left(u-\frac{i}{2}\right) & Q_{2}\left(u-\frac{i}{2}\right)\end{array} \right\rvert\,=u^{L}$
Q_{1} - polynomial
Q_{2} - polynomial
By itself has finite set of solutions!
Gives the spectrum of the theory:
$E=\left.\partial_{u} \log Q_{1}\right|_{u=i / 2}$

$Q_{1}=\prod_{i=1}^{S}\left(u-u_{i}\right), u_{i}=\frac{1}{2} \cot q_{i}$

$Q_{2}=\prod_{i=1}^{L-S}\left(u-v_{i}\right), \quad v_{i}=\frac{1}{2} \cot p_{i}$

New type of the Integrable structure

Whereas the Baxter is already quite complicated for $\mathrm{SU}(3)$ The QQ-formulation remains simple:

$$
\left|\begin{array}{ccc}
Q_{1}(u+i) & Q_{2}(u+i) & Q_{3}(u+i) \\
Q_{1}(u) & Q_{2}(u) & Q_{3}(u) \\
Q_{1}(u-i) & Q_{2}(u-i) & Q_{3}(u-i)
\end{array}\right|=u^{L}
$$

Q_{1} - polynomial
Q_{2} - polynomial
Q3 - polynomial
All conserved charges are encoded into:

$$
-T(u)=\left|\begin{array}{ccc}
Q_{1}(u+2 i) & Q_{2}(u+2 i) & Q_{3}(u+2 i) \\
Q_{1}(u) & Q_{2}(u) & Q_{3}(u) \\
Q_{1}(u-i) & Q_{2}(u-i) & Q_{3}(u-i)
\end{array}\right|
$$

New type of the Integrable structure

Two main ingredients:

- QQ-relations

$$
\begin{aligned}
\operatorname{sl}(2) & \rightarrow \operatorname{psu}(2,2 \mid 4) \\
\left(Q_{1}, Q_{2}\right) & \rightarrow \underbrace{\left(\mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{3}, \mathbf{P}_{4}\right.}_{S^{5}} \underbrace{\left.\mathbf{Q}_{1}, \mathbf{Q}_{2}, \mathbf{Q}_{3}, \mathbf{Q}_{4}\right)}_{A d S_{5}}
\end{aligned}
$$

- Analyticity
Q_{1} - polynomial
Q_{2} - polynomial

What are the analytic properties of the Q's at finite coupling?

Motivation from classics

String world-sheet action:

$$
S=g \int \operatorname{str}\left(J^{(2)} \wedge * J^{(2)}-J^{(1)} \wedge J^{(3)}\right)
$$

Flat connection $\mathcal{A}(u)=J^{(0)}+\frac{u}{\sqrt{u^{2}-4 g^{2}}} J^{(2)}-\frac{2 g}{\sqrt{u^{2}-4 g^{2}}} * J^{(2)}+\ldots$

$$
\Omega(u, \tau)=\operatorname{Pexp} \oint \mathcal{A}_{\sigma} d \sigma
$$

Eigenvalues of the monodromy matrix:

$$
\underbrace{\left(e^{i p_{1}}, e^{i p_{2}}, e^{i p_{3}}, e^{i p_{4}}\right.}_{S^{5}} \underbrace{\left.e^{i q_{1}}, e^{i q_{2}}, e^{i q_{3}}, e^{i q_{4}}\right)}_{A d S_{5}}
$$

Giving (WKB approximation):

$$
\mathbf{P}_{a} \sim \exp \left(-\int^{u} p_{a}(v) d v\right) \quad, \quad \mathbf{Q}_{i} \sim \exp \left(-\int^{u} q_{i}(v) d v\right)
$$

Analytic properties:

$$
\text { [Dorey, Vicedo] } \quad \oint p(u) d u=\mathbb{Z}
$$

New type of the Integrable structure

Simplest analyticity assumptions:
\mathbf{P}_{a}

$\mathbf{P}_{a} \simeq u^{\mathrm{R}-\text { charge }}, u \rightarrow \infty$
Charges in S^{5} are integer
Q_{a}

$$
\mathbf{Q}_{a} \sim u^{\text {conformal charge }}
$$

Charges in AdS_{5} contain anom.dimension

New type of the Integrable structure

New type of the Integrable structure

TN.G., Kazakov, Leuren, Volin]
Q_{a}

$$
?=\widetilde{\mathbf{Q}}_{a}
$$

Q_{a}

Deduce gluing condition:
[N.G., Sizov, Levkovich-Maslyuk]

$$
\widetilde{\mathrm{Q}}_{a}=\overline{\mathrm{Q}}_{b}
$$

Numerical Solution of the Spectral Problem

QSC and P-functions

For any state all Q-functions can be built using $\mathbf{P}_{a}, \mathbf{P}^{a}$

$$
x+\frac{1}{x}=\frac{u}{g} \quad g=\frac{\sqrt{\lambda}}{4 \pi}
$$

$$
\begin{aligned}
& \mathbf{P}_{a}(u) \sim 1 / u^{M_{a}} \stackrel{S^{5} \text { charges }}{S^{5}} \\
& \mathbf{P}_{a}(u)=\sum_{n=M_{a}}^{\infty} \frac{c_{a, n}}{x^{n}} \quad \text { Marboe,Volin 2014 } \\
& a, b=1, \ldots, 4
\end{aligned}
$$

$c_{a, n}$ are the main parameters in our numerics

$$
\tilde{\mathbf{P}}_{a}(u)=\sum_{n=M_{a}}^{\infty} c_{a, n} x^{n}
$$

Convergence

Konishi anomalous dimension

$\frac{\sqrt{\lambda}}{4 \pi}$	$\Delta_{S=2}(\lambda)$	$\frac{\sqrt{\lambda}}{4 \pi}$	$\Delta_{S=2}(\lambda)$
0.1	4.115506377945221056840042671851	0.2	4.418859880802350962250362876243
0.3	4.826948662284842304671283425271	0.4	5.271565182595898008221528540034
0.5	5.712723424787739030626966875973	0.6	6.133862814488691819595425762346
0.7	6.531606077852440195886557953690	0.8	6.907504206024567515828872789717
0.9	7.2641695874391127748396398539	1	7.60407071704738848334286555
1.1	7.9292942641568451632186264	1.2	8.241563441147703542676050
1.3	8.54230287229506674486342	1.4	8.8326999393163090494514
1.5	9.11375404891588560886	1.6	9.386314656368554140399
1.7	9.65111042653013781471	1.8	9.9087717085593508789
1.9	10.1598480131615473641	2	10.4048217434405061127
2.1	10.6441190951617575972	2.2	10.878118797537726796
2.3	11.107159189584305149	2.4	11.331544000504529107
2.5	11.551547111042160297	2.6	11.76741650605722239
2.7	11.97937757952067741	2.8	12.18763591669137588
2.9	12.3923796509149519	3	12.5937814717988565
3.1	12.7920003457144898	3.2	12.9871829973986392
3.3	13.1794651919629055	3.4	13.368972849208144
3.5	13.555823016292914	3.6	13.740124720157966
3.7	13.921979717391474	3.8	14.101483156227149
3.9	14.278724162943763	4	14.45378636296056
4.1	14.62674834530641	4.2	14.79768407780976
4.3	14.96666327925592	4.4	15.13375175384302
4.5	15.29901169250472	4.6	15.4625019450274
4.7	15.6242782663505	4.8	15.7843935399844
4.9	15.942897981092	5	16.099839321454

Quark - anti-quark potential

Cusped Wilson line in $\mathrm{N}=4 \mathrm{SYM}$

$$
W=\operatorname{Tr} \mathcal{P} \exp \int d t[i A \cdot \dot{x}+\vec{\Phi} \cdot \vec{n}|\dot{x}|]
$$

> generalized
> $q \bar{q}$ potential

$$
\langle W\rangle \sim\left(\frac{\Lambda_{I R}}{\Lambda_{U V}}\right)^{\Delta}
$$

Parameters:

- Cusp angle ϕ
- Angle θ between the couplings to scalars on two rays
- 't Hooft coupling λ

Flat space limit

In the singular limit $\phi \rightarrow \pi$ we get the flat space potential

$$
\Delta=-\frac{\Omega(\lambda, \theta)}{\pi-\phi}
$$

String theory prediction [Drukker, Forini 11]

$$
\Gamma_{\text {cusp }}\left(\phi=\frac{\pi}{4}, \theta=\frac{4 \pi}{10}, g\right) \simeq 0.3122892 g-0.0410591+\frac{0.00073853}{g}+\mathcal{O}\left(\frac{1}{g^{2}}\right) \quad \Gamma_{\text {cusp }}^{\text {classical }} \simeq 0.3122881 g .
$$

Weak coupling: results

We have computed the first 7 orders of the expansion

$$
\begin{aligned}
\frac{\Omega}{4 \pi}= & \hat{g}^{2}+ \\
& \hat{g}^{4}[16 L-8]+ \\
& \hat{g}^{6}\left[128 L^{2}+L\left(64+\frac{64 \pi^{2} T}{3}\right)-112-\frac{8 \pi^{2}}{3}+72 T \zeta_{3}\right]+ \\
& \hat{g}^{8}\left[\frac{2048 L^{3}}{3}+\frac{1024}{3} \pi^{2} L^{2} T+2048 L^{2}+L T\left(768 \zeta_{3}+\frac{2176 \pi^{2}}{3}\right)+\left(-768-\frac{640 \pi^{2}}{3}\right) L\right. \\
& \left.+T^{2}\left(128 \pi^{2} \zeta_{3}-760 \zeta_{5}\right)+T\left(384 \zeta_{3}-640 \pi^{2}+\frac{32 \pi^{4}}{9}\right)+\frac{1664 \zeta_{3}}{3}+\frac{1216 \pi^{2}}{9}-1280\right]+\ldots \\
\hat{g} \equiv & g \cos \frac{\theta}{2} \quad, T \equiv \frac{1}{\cos ^{2} \frac{\theta}{2}}, L \equiv \log \sqrt{8 e^{\gamma} \pi \hat{g}^{2}}
\end{aligned}
$$

Pefect match with known results (first 3 orders and partial data at higher loops)

Ericksson, Semenoff, Szabo, Zarembo 2000;
Pineda 2007; Drukker, Forini 2011; Stahlhofen 2012; Correa, Henn, Maldacen, Sever 2012;
Bykov, Zarembo 2012; Prausa, Steinhauser 2013;

+ new simple formula for subleading logs to all orders

$$
\begin{aligned}
& \frac{\Omega}{4 \pi}=\sum_{n=0}^{\infty} \hat{g}^{2 n+2} \frac{16^{n} L^{n}}{n!} \times \\
& \left(1+\frac{3 n^{2}-5 n}{4 L}+\pi^{2} T \frac{n^{2}-n}{12 L}+\mathcal{O}\left(1 / L^{2}\right)\right)
\end{aligned}
$$

7-loop result. The term of order \hat{g}^{14} in $\frac{\Omega}{4 \pi}$ is given by

$$
\begin{aligned}
& \frac{1048576 L^{6}}{45}+\frac{524288}{9} L^{5} \pi^{2} T+\frac{6815744 L^{5}}{15}+\frac{262144}{9} L^{4} \pi^{4} T^{2}-65536 L^{4} T \zeta_{3}+\frac{40632320}{9} L^{4} \pi^{2} T \\
& -\frac{15007744}{9} L^{4} \pi^{2}+2752512 L^{4}+\frac{131072}{81} L^{3} \pi^{6} T^{3}+65536 L^{3} \pi^{2} T^{2} \zeta_{3}+\frac{655360}{3} L^{3} T^{2} \zeta_{5} \\
& +\frac{12255232}{9} L^{3} \pi^{4} T^{2}-\frac{64159744}{135} L^{3} \pi^{4} T-65536 L^{3} T \zeta_{3}+\frac{13303808}{3} L^{3} \pi^{2} T+\frac{3407872 L^{3} \zeta_{3}}{9} \\
& -\frac{11141120}{9} L^{3} \pi^{2}+\frac{15073280 L^{3}}{3}+\frac{2080768}{45} L^{2} \pi^{4} T^{3} \zeta_{3}-\frac{499712}{3} L^{2} \pi^{2} T^{3} \zeta_{5}-129024 L^{2} T^{3} \zeta_{7} \\
& +32768 L^{2} \pi^{6} T^{3}-\frac{2828288}{405} L^{2} \pi^{6} T^{2}-36864 L^{2} T^{2} \zeta_{3}^{2}+\frac{11444224}{3} L^{2} \pi^{2} T^{2} \zeta_{3}+20480 L^{2} T^{2} \zeta_{5} \\
& +\frac{2351104}{3} L^{2} \pi^{4} T^{2}-\frac{7610368}{9} L^{2} \pi^{2} T \zeta_{3}-40960 L^{2} T \zeta_{5}-\frac{27344896}{45} L^{2} \pi^{4} T+1671168 L^{2} T \zeta_{3} \\
& -3817472 L^{2} \pi^{2} T+\frac{7221248 L^{2} \pi^{4}}{45}+2555904 L^{2} \zeta_{3}+\frac{17096704 L^{2} \pi^{2}}{9}-\frac{6914048 L^{2}}{3}+\frac{8192}{9} L \pi^{6} T^{4} \zeta_{3} \\
& -\frac{133120}{3} L \pi^{4} T^{4} \zeta_{5}+369152 L \pi^{2} T^{4} \zeta_{7}-628992 L T^{4} \zeta_{9}+\frac{1176832 L \pi^{8} T^{3}}{42525}+\frac{210944}{3} L \pi^{2} T^{3} \zeta_{3}^{2} \\
& -71680 L T^{3} \zeta_{3} \zeta_{5}+30720 L T^{3} \zeta_{6,2}+\frac{7872512}{15} L \pi^{4} T^{3} \zeta_{3}-1899520 L \pi^{2} T^{3} \zeta_{5}+867328 L T^{3} \zeta_{7} \\
& +\frac{212992}{27} L \pi^{6} T^{3}-\frac{1150976}{15} L \pi^{4} T^{2} \zeta_{3}+665600 L \pi^{2} T^{2} \zeta_{5}-268800 L T^{2} \zeta_{7}+\frac{2378752}{405} L \pi^{6} T^{2} \\
& +43008 L T^{2} \zeta_{3}^{2}+\frac{757760}{3} L \pi^{2} T^{2} \zeta_{3}-1587200 L T^{2} \zeta_{5}-\frac{14838784}{9} L \pi^{4} T^{2}-\frac{2152448 L \pi^{6} T}{2835} \\
& -163840 L T \zeta_{3}^{2}+\frac{24051712}{9} L \pi^{2} T \zeta_{3}+364544 L T \zeta_{5}+\frac{390412288}{405} L \pi^{4} T+2457600 L T \zeta_{3} \\
& -\frac{39706624}{9} L \pi^{2} T-\frac{5324800}{9} L \pi^{2} \zeta_{3}+\frac{1998848 L \zeta_{5}}{5}-\frac{34199552 L \pi^{4}}{225}+\frac{9797632 L \zeta_{3}}{3} \\
& +\frac{61534208 L \pi^{2}}{81}-\frac{23560192 L}{3}-\frac{11264}{105} \pi^{6} T^{5} \zeta_{5}+\frac{73216}{5} \pi^{4} T^{5} \zeta_{7}-285120 \pi^{2} T^{5} \zeta_{9} \\
& +1271952 T^{5} \zeta_{11}-\frac{10544 \pi^{10} T^{4}}{93555}+\frac{91136}{9} \pi^{4} T^{4} \zeta_{3}^{2}-\frac{520832}{3} \pi^{2} T^{4} \zeta_{3} \zeta_{5}+179424 T^{4} \zeta_{5}^{2} \\
& +361088 T^{4} \zeta_{3} \zeta_{7}+\frac{16768}{3} \pi^{2} T^{4} \zeta_{6,2}-26432 T^{4} \zeta_{8,2}+\frac{65536}{45} \pi^{6} T^{4} \zeta_{3}-63488 \pi^{4} T^{4} \zeta_{5} \\
& +401408 \pi^{2} T^{4} \zeta_{7}-508032 T^{4} \zeta_{9}+\frac{5137792 \pi^{6} T^{3} \zeta_{3}}{2835}-768 T^{3} \zeta_{3}^{3}+30976 \pi^{4} T^{3} \zeta_{5} \\
& -\frac{941632}{3} \pi^{2} T^{3} \zeta_{7}+\frac{2211904 T^{3} \zeta_{9}}{3}-\frac{142816 \pi^{8} T^{3}}{14175}+\frac{1183232}{3} \pi^{2} T^{3} \zeta_{3}^{2}-337664 T^{3} \zeta_{3} \zeta_{5} \\
& \text { NG, F Levkovich }
\end{aligned}
$$

Numerical solution

We adapted the efficient algorithm of NG, F Levkovich-Maslyuk, Sizov 2015
$\Omega(\theta=0)$

Matches AdS/CFT predictions!
0.2

Ladders limit

Double scaling limit $\quad \theta \rightarrow i \infty, g \rightarrow 0, \quad \frac{g}{e^{i \theta / 2}}=$ fixed
Selects only ladder diagrams

$$
\begin{aligned}
& \frac{\Omega}{4 \pi}=\hat{g}^{2}+ \\
& \hat{g}^{4}[16 L-8]+ \\
& \hat{g}^{6}\left[128 L^{2}+L\left(64+\frac{642 Y}{3}\right)-112-\frac{8 \pi^{2}}{3}+72 \backslash \zeta_{3}\right]+ \\
& \hat{g}^{8}\left[\frac{2048 L^{3}}{3}+\frac{1024}{3} \pi^{2} / L T+2048 L^{2}+L T\left(60 \varsigma_{3}+\frac{2176 / 2}{3}\right)+\left(-768-\frac{640 \pi^{2}}{3}\right) L\right. \\
& \left.\left.+T^{2} y / 2 \pi \pi^{2} \zeta_{3}-76 \zeta_{5}\right)+T\left(282 \zeta_{3}-64 y / 4+\frac{32 y}{9}\right)+\frac{1664 \zeta_{3}}{3}+\frac{1216 \pi^{2}}{9}-1280\right]+\ldots \\
& T \equiv \frac{1}{\cos ^{2} \frac{\theta}{2}} \rightarrow 0 \\
& L \equiv \log \sqrt{8 e^{\gamma} \pi \hat{g}^{2}} \\
& \hat{g} \equiv g \cos \frac{\theta}{2}=\text { fixed }
\end{aligned}
$$

$$
\Omega=\Omega(\hat{g})
$$

Ladders limit

Double scaling limit $\quad \theta \rightarrow i \infty, g \rightarrow 0, \quad \frac{g}{e^{i \theta / 2}}=$ fixed
Bethe-Salpeter techniques reduce sum of ladder diagrams to a Schrodinger problem for the ground state

$$
-F^{\prime \prime}(z)-\frac{4 \hat{g}^{2}}{z^{2}+1} F(z)=-\frac{\Omega^{2}}{4} F(z)
$$

$\hat{g} \equiv g \cos \frac{\theta}{2}=$ fixed
Captures all orders in \hat{g} including all finite-size effects
Can we get it from the QSC ?

Ladders limit in the QSC

Great simplification as 4th order Baxter equation on \mathbf{Q}_{i} factorizes

$$
\begin{aligned}
&-2\left(2 \hat{g}^{2}-\Omega u+u^{2}\right) q_{1}(u)+u^{2} q_{1}(u-i)+u^{2} q_{1}(u+i)=0 \\
& q_{1}(u) \equiv \mathbf{Q}_{1}(u) e^{ \pm \pi u} / \sqrt{u}
\end{aligned}
$$

The Schrodinger equation

$$
-F^{\prime \prime}(z)-\frac{4 \hat{g}^{2}}{z^{2}+1} F(z)=-\frac{\Omega^{2}}{4} F(z)
$$

maps to this Baxter equation after a Mellin-type transform!

$$
q_{1}(u)=2 u \int_{i}^{+\infty} \frac{e^{-\frac{\Omega z}{2}}}{z^{2}+1}\left(\frac{z+i}{z-i}\right)^{i u} F(z) d z
$$

(similar to ODE/IM ?)

ABJ Theory?

Spectral curve for ABJM

Quantum Spectral Curve construction is known for ABJM theory
[A. Cavaglia , D. Fioravanti, N. G., R. Tateo]

Important difference is the position of the branch points:

$$
\text { SYM: } \pm 2 g(\lambda)= \pm \frac{\sqrt{\lambda}}{2 \pi}
$$

$$
\text { ABJM: } \pm 2 h(\lambda)=?
$$

$h(\lambda)$ enters into many important quantities: cusp dimension, magnon dispertion

Finding Interpolation function h

In the near BPS limit we should be able to match with localization

Integrability: Elliptic type integral

Comparing cross-ratios of the branch points:

$$
\kappa=4 \sinh (2 \pi h)
$$

Interpolation function h

$$
\lambda=\frac{\sinh (2 \pi h)}{2 \pi}{ }_{3} F_{2}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2} ; 1, \frac{3}{2} ;-\sinh ^{2}(2 \pi h)\right)
$$

Reproduces ~ 4

$$
\begin{aligned}
& h(\lambda)=\lambda-\frac{\pi^{2} \lambda^{3}}{3}+\frac{5 \pi^{4} \lambda^{5}}{12}-\frac{893 \pi^{6} \lambda^{7}}{1260}+\mathcal{O}\left(\lambda^{9}\right) \\
& h(\lambda)=\sqrt{\frac{\lambda}{2}-\frac{1}{48}-\frac{\log 2}{2 \pi}+\mathcal{O}\left(e^{-\pi \sqrt{8 \lambda}}\right)}
\end{aligned}
$$

Is ABJ theory Integrable?

Integrability structure of ABJM is too rigid. Impossible to deform

[Cavaglia, N.G., Levkovich-Maslyuk]

$$
h\left(\lambda_{1}, \lambda_{2}\right)=\frac{1}{4 \pi} \log \left(\frac{a b+1}{a+b}\right)
$$

$$
\lambda_{1}=-\frac{1}{4 \pi^{2}} \oint_{a}^{1 / a} \omega(Z) \frac{d Z}{Z}, \lambda_{2}=+\frac{1}{4 \pi^{2}} \oint_{-b}^{-1 / b} \omega(Z) \frac{d Z}{Z} \quad \omega(Z)=\log (\sqrt{(Z+b)(Z+1 / b)}-\sqrt{(Z-a)(Z-1 / a)})
$$

Tests of the conjecture

1) Reality

$$
\begin{gathered}
4 e^{2 \pi i(B-1 / 2)}=a+\frac{1}{a}+b+\frac{1}{b}, \quad 2 \kappa e^{\pi i B}=a+\frac{1}{a}-b-\frac{1}{b} \quad u=\frac{\kappa^{2}}{8}-\cos 2 \pi B \\
h\left(\lambda_{1}, \lambda_{2}\right)=\frac{1}{4 \pi} \log \left(u+\sqrt{u^{2}-1}\right)
\end{gathered}
$$

2) Weak coupling
[Minahan, Ohlsson Sax, Sieg]

$$
\begin{aligned}
h^{2}\left(\lambda_{1}, \lambda_{2}\right)= & \lambda_{1} \lambda_{2}-\frac{\pi^{2}}{6} \lambda_{1} \lambda_{2}\left(\lambda_{1}+\lambda_{2}\right)^{2} \\
& +\frac{\pi^{4}}{360} \lambda_{1} \lambda_{2}\left(\lambda_{1}+\lambda_{2}\right)^{2}\left(3 \lambda_{1}^{2}+3 \lambda_{2}^{2}+79 \lambda_{1} \lambda_{2}\right)
\end{aligned}
$$

1) Partial weak coupling

$$
h^{2}\left(\lambda_{1}, \lambda_{2}\right)=\frac{\lambda_{1}}{\pi} \sin \left(\pi \lambda_{2}\right)+\frac{\lambda_{1}^{2}}{3} \sin ^{2}\left(\frac{\pi \lambda_{2}}{2}\right)\left(1-5 \cos \left(\pi \lambda_{2}\right)\right)
$$

2) Strong coupling
[Aharony, Hashimoto, Hirano, Ouyang]

$$
\left.\begin{array}{rl}
h\left(\lambda_{1}, \lambda_{2}\right) & =\sqrt{\frac{\hat{\lambda}}{2}}-\frac{\log (2)}{2 \pi}-\frac{e^{-2 \pi \sqrt{2 \hat{\lambda}}} \cos (2 \pi B)}{\pi}\left(1+\frac{1}{\pi 2 \sqrt{2 \hat{\lambda}}}\right) \\
& \hat{\lambda}
\end{array}\right) \frac{\lambda_{1}+\lambda_{2}}{2}-\frac{1}{2}\left(B-\frac{1}{2}\right)^{2}-\frac{1}{24}=\frac{\lambda_{1}+\lambda_{2}}{2}-\frac{1}{2}\left(\lambda_{1}-\lambda_{2}\right)^{2}-\frac{1}{24} .
$$

Seinberg-like symmetry

4) Expected symmetry duality between two gauge group

$$
\left(\lambda_{1} U\left(N_{1}\right)_{k} \times U\left(N_{2}\right)_{-k} \text { and } U\left(2 N_{2}-N_{1}+k\right)_{k} \times U\left(N_{1}\right)_{-k}\right.
$$

So the expression is clearly invariant

$$
h\left(\lambda_{1}, \lambda_{2}\right)=\frac{1}{4 \pi} \log \left(\frac{a b+1}{a+b}\right)
$$

Conclusions

- More general systems with different symmetries?
- Classification of all consistent matching conditions is needed.
- How Qs are related to the wave functions? Applications for 3-point correlators?
- Relation to Integrability found in localization?
- Etc...

BFKL regime

BFKL regime

Important class of single trace operators:

$$
\operatorname{tr} D^{S} Z^{2}+\text { permutations }
$$

Spectrum for different spins:

BFKL
[Kotikov, Lipatov, Rej, Staudacher, Velizhanin]
BFKL regime:
$S \rightarrow-1, g \rightarrow 0 \quad$ So that: $\quad \frac{g^{2}}{S+1} \simeq 1 \quad$ Resumming to all loops terms $\quad\left(\frac{g^{2}}{S+1}\right)^{n}$
In this regime SYM is undistinguishable from the real QCD

Analytic structure at finite coupling

BFKL pomeron intercept

$$
j=2+\left.S(\Delta)\right|_{\Delta=0}
$$

BFKL in QCD

- At the LO:

$$
\chi(\gamma)=2 \Psi(1)-\Psi(\gamma)-\Psi(1-\gamma), \quad \Psi(\gamma)=\Gamma^{\prime}(\gamma) / \Gamma(\gamma)
$$

- At NLO:

Kotikov,Lipatov 2002 Kotikov,Lipatov 2000

$$
\begin{aligned}
& \delta(\gamma)=-\left[\left(\frac{11}{3}-\frac{2 n_{f}}{3 N_{c}}\right) \frac{1}{2}\left(\chi^{2}(\gamma)-\Psi^{\prime}(\gamma)+\Psi^{\prime}(1-\gamma)\right)-\left(\frac{67}{9}-\frac{\pi^{2}}{3}-\frac{10}{9} \frac{n_{f}}{N_{c}}\right) \chi(\gamma\right. \\
&-6 \zeta(3)+\frac{\pi^{2} \cos (\pi \gamma)}{\sin ^{2}(\pi \gamma)(1-2 \gamma)}\left(3+\left(1+\frac{n_{f}}{N_{c}^{3}}\right) \frac{2+3 \gamma(1-\gamma)}{(3-2 \gamma)(1+2 \gamma)}\right) \\
&\left.-\Psi^{\prime \prime}(\gamma)-\Psi^{\prime \prime}(1-\gamma)-\frac{\pi^{3}}{\sin (\pi \gamma)}+4 \phi(\gamma)\right] . \\
& \phi(\gamma)=-\int_{0}^{1} \frac{d x}{1+x}\left(x^{\gamma-1}+x^{-\gamma}\right) \int_{x}^{1} \frac{d t}{t} \ln (1-t) \\
&=\sum_{n=0}^{\infty}(-1)^{n}\left[\frac{\Psi(n+1+\gamma)-\Psi(1)}{(n+\gamma)^{2}}+\frac{\Psi(n+2-\gamma)-\Psi(1)}{(n+1-\gamma)^{2}}\right]
\end{aligned}
$$

BFKL regime

$S \rightarrow-1, g \rightarrow 0, \frac{g^{2}}{S+1}=$ fixed Resums contributions from all loop orders
$\mathrm{N}=4$ SYM should give the highest transcendentality part of the QCD result
$S=-1+\sum_{n=1}^{\infty} g^{2 n}\left[F_{n}\left(\frac{\Delta-1}{2}\right)+F_{n}\left(\frac{-\Delta-1}{2}\right)\right]$
Costa,Goncalves,Penedones 2012

Leading

$$
F_{1}(x)=-4 S_{1}(x)
$$

order
$\mathrm{NLO} \quad F_{2}(x)=4\left(-\frac{3}{2} \zeta(3)+\pi^{2} \log 2+\frac{\pi^{2}}{3} S_{1}(x)+2 S_{3}(x)\right.$

$$
\left.+\quad \pi^{2} S_{-1}(x)-4 S_{-2,1}(x)\right)
$$

NNLO $\quad F_{3}(x)=? ? ? ? ?$

Basis for NNLO

Each term has transcendentality 5

harmonic sums with transcendentality up to 5 , and constants:

$$
\pi, \log (2), \zeta(3), \zeta(5), \operatorname{Li}_{4}(1 / 2), \operatorname{Li}_{5}(1 / 2)
$$

In total 288 elements
We derive analytic constraints from QSC for expansion around poles at $\Delta_{0}=1,3,5,7, \ldots$

Our result: BFKL at NNLO

$$
\left.\begin{array}{l}
S=-1+\sum_{n=1}^{\infty} g^{2 n}\left[F_{n}\left(\frac{\Delta-1}{2}\right)+F_{n}\left(\frac{-\Delta-1}{2}\right)\right] \\
\frac{1}{256} F_{3}= \\
-\frac{5 S_{-5}}{8}-\frac{S_{-4,1}}{2}+\frac{S_{1} S_{-3,1}}{2}+\frac{S_{-3,2}}{2}-\frac{5 S_{2} S_{-2,1}}{4} \\
+\frac{S_{-4} S_{1}}{4}+\frac{S_{-3} S_{2}}{8}+\frac{3 S_{3,-2}}{4}-\frac{3 S_{-3,1,1}}{2}-S_{1} S_{-2,1,1} \\
+S_{2,-2,1}+3 S_{-2,1,1,1}-\frac{3 S_{-2} S_{3}}{4}-\frac{S_{5}}{8}+\frac{S_{-2} S_{1} S_{2}}{4} \\
+\pi^{2}\left[\frac{S_{-2,1}}{8}-\frac{7 S_{-3}}{48}-\frac{S_{-2} S_{1}}{12}+\frac{S_{1} S_{2}}{48}\right] \quad \text { Fhys.Revkovich-Maslyk,Sizov 115 (2015) }
\end{array}\right) \quad \text { Found from } \quad \text { iterative solution of QSC }
$$

