QUANTUM SPECTRAL CURVE

Nikolay Gromov

Based on

N. G., V. Kazakov, S. Leurent, D. Volin 1305.1939 (PRL), 1405.4857 (JHEP) M. Alfimov, N. G., V. Kazakov 1408.1042 (JHEP) N. G., F. Levkovich-Maslyuk 1601.05679 N.G., F. Levkovich-Maslyuk, G. Sizov 1507.04010 (PRL) N.G., F. Levkovich-Maslyuk, G. Sizov 1504.06640 (JHEP) M. Alfimov, N.G., G. Sizov to appear

Paris, 2016

Integrability in gauge theory

N=4 SYM

The "simplest" generalization of QCD:

$$S = \frac{1}{4g_{YM}^2} \int d^4x \operatorname{Tr}(F_{\mu\nu}F^{\mu\nu} + \ldots) \quad \text{Plus extra scalar fields} \quad \Phi_1, \ldots, \Phi_6$$

and fermions
Parameters: $\lambda = g_{YM}^2 N_c$ and $N_c = \infty$

Symmetries:

Conformal:

New type of the Integrable structure

Baxter equation for the spectrum of SU(2) XXX spin chain

$$T(u)Q(u) + (u + i/2)^{L}Q(u - i) + (u - i/2)^{L}Q(u + i) = 0$$

Two solutions: polynomial $Q_1 \sim u^S$ and $Q_2 \sim u^{L-S}$

Satisfy Wronskian relation:

$$\begin{vmatrix} Q_1 \left(u + \frac{i}{2} \right) & Q_2 \left(u + \frac{i}{2} \right) \\ Q_1 \left(u - \frac{i}{2} \right) & Q_2 \left(u - \frac{i}{2} \right) \end{vmatrix} = u^L$$

 Q_1 - polynomial Q_2 - polynomial

$$Q_1 = \prod_{i=1}^{S} (u - u_i) , \ u_i = \frac{1}{2} \cot q_i$$

By itself has finite set of solutions! Gives the spectrum of the theory: $E = \partial_u \log Q_1 |_{u=i/2}$

$$Q_2 = \prod_{i=1}^{L-S} (u - v_i) , \quad v_i = \frac{1}{2} \cot p_i$$

New type of the Integrable structure

Whereas the Baxter is already quite complicated for SU(3) The QQ-formulation remains simple:

$$\begin{vmatrix} Q_{1}(u+i) & Q_{2}(u+i) & Q_{3}(u+i) \\ Q_{1}(u) & Q_{2}(u) & Q_{3}(u) \\ Q_{1}(u-i) & Q_{2}(u-i) & Q_{3}(u-i) \end{vmatrix} = u^{L}$$

 Q_1 - polynomial

 Q_2 - polynomial

 Q_3 - polynomial

All conserved charges are encoded into:

$$T(u) = \begin{vmatrix} Q_1(u+2i) & Q_2(u+2i) & Q_3(u+2i) \\ Q_1(u) & Q_2(u) & Q_3(u) \\ Q_1(u-i) & Q_2(u-i) & Q_3(u-i) \end{vmatrix}$$

<u>New type of the Integrable structure</u>

Two main ingredients:

• QQ-relations

$$(Q_1, Q_2) \rightarrow psu(2, 2|4)$$

 $(Q_1, Q_2) \rightarrow (\mathbf{P}_1, \mathbf{P}_2, \mathbf{P}_3, \mathbf{P}_4|\mathbf{Q}_1, \mathbf{Q}_2, \mathbf{Q}_3, \mathbf{Q}_4)$
 $S^5 \qquad AdS_5$

• Analyticity

 Q_1 - polynomial Q_2 - polynomial

What are the analytic properties of the Q's at finite coupling?

Motivation from classics

[Bena, Polchinski, Roiban]

String world-sheet action:

$$S = g \int \operatorname{str}(J^{(2)} \wedge *J^{(2)} - J^{(1)} \wedge J^{(3)})$$

Flat connection $\mathcal{A}(u) = J^{(0)} + \frac{u}{\sqrt{u^2 - 4g^2}} J^{(2)} - \frac{2g}{\sqrt{u^2 - 4g^2}} * J^{(2)} + \dots$

$$\Omega(u,\tau) = \operatorname{Pexp} \oint \mathcal{A}_{\sigma} d\sigma$$

Eigenvalues of the monodromy matrix:

$$\underbrace{\left(e^{ip_{1}}, e^{ip_{2}}, e^{ip_{3}}, e^{ip_{4}}\right)}_{\mathbf{S}^{5}} \underbrace{e^{iq_{1}}, e^{iq_{2}}, e^{iq_{3}}, e^{iq_{4}}}_{\mathbf{A}dS_{5}}$$
Giving (WKB approximation):

$$\mathbf{P}_{a} \sim \exp\left(-\int^{u} p_{a}(v)dv\right) , \quad \mathbf{Q}_{i} \sim \exp\left(-\int^{u} q_{i}(v)dv\right) ,$$

Analytic properties: [Dorey, Vicedo] $\oint p(u)du = \mathbb{Z}$

New type of the Integrable structure [N.G., Kazakov, Leuren, Volin]

Simplest analyticity assumptions:

 \mathbf{P}_{a}

$$\mathbf{P}_a \simeq u^{\mathrm{R-charge}} , \ u \to \infty$$

Charges in S⁵ are integer

Charges in AdS₅ contain anom.dimension

<u>New type of the Integrable structure</u>

Deduce gluing condition:

[N.G., Sizov, Levkovich-Maslyuk]

$$\tilde{\mathbf{Q}}_a = \bar{\mathbf{Q}}_b$$

Standard QQ-relations

+

Numerical Solution of the Spectral Problem

QSC and **P-functions**

Gromov, Kazakov, Leurent, Volin 2013,14

 $c_{a,n}$ are the main parameters in our numerics

$$\tilde{\mathbf{P}}_a(u) = \sum_{n=M_a}^{\infty} c_{a,n} x^n$$

Convergence

Konishi anomalous dimension

$\frac{\sqrt{\lambda}}{4\pi}$	$\Delta_{S=2}(\lambda)$	$\frac{\sqrt{\lambda}}{4\pi}$	$\Delta_{S=2}(\lambda)$
0.1	4.115506377945221056840042671851	0.2	4.418859880802350962250362876243
0.3	4.826948662284842304671283425271	0.4	5.271565182595898008221528540034
0.5	5.712723424787739030626966875973	0.6	6.133862814488691819595425762346
0.7	6.531606077852440195886557953690	0.8	6.907504206024567515828872789717
0.9	7.2641695874391127748396398539	1	7.60407071704738848334286555
1.1	7.9292942641568451632186264	1.2	8.241563441147703542676050
1.3	8.54230287229506674486342	1.4	8.8326999393163090494514
1.5	9.11375404891588560886	1.6	9.386314656368554140399
1.7	9.65111042653013781471	1.8	9.9087717085593508789
1.9	10.1598480131615473641	2	10.4048217434405061127
2.1	10.6441190951617575972	2.2	10.878118797537726796
2.3	11.107159189584305149	2.4	11.331544000504529107
2.5	11.551547111042160297	2.6	11.76741650605722239
2.7	11.97937757952067741	2.8	12.18763591669137588
2.9	12.3923796509149519	3	12.5937814717988565
3.1	12.7920003457144898	3.2	12.9871829973986392
3.3	13.1794651919629055	3.4	13.368972849208144
3.5	13.555823016292914	3.6	13.740124720157966
3.7	13.921979717391474	3.8	14.101483156227149
3.9	14.278724162943763	4	14.45378636296056
4.1	14.62674834530641	4.2	14.79768407780976
4.3	14.96666327925592	4.4	15.13375175384302
4.5	15.29901169250472	4.6	15.4625019450274
4.7	15.6242782663505	4.8	15.7843935399844
4.9	15.942897981092	5	16.099839321454

Quark – anti-quark potential

Cusped Wilson line in N=4 SYM

 $W = \operatorname{Tr} \mathcal{P} \exp \int dt \left[iA \cdot \dot{x} + \vec{\Phi} \cdot \vec{n} \left| \dot{x} \right| \right]$

Parameters:

- Cusp angle ϕ
- Angle θ between the couplings to scalars on two rays
- 't Hooft coupling λ

Flat space limit

In the singular limit $\phi \to \pi$ we get the flat space potential

$$\Delta = -\frac{\Omega(\lambda,\theta)}{\pi - \phi}$$

String theory prediction [Drukker, Forini 11]

$$\Gamma_{\rm cusp}\left(\phi = \frac{\pi}{4}, \theta = \frac{4\pi}{10}, g\right) \simeq 0.3122892 \ g - 0.0410591 + \frac{0.00073853}{g} + \mathcal{O}\left(\frac{1}{g^2}\right) \qquad \qquad \Gamma_{\rm cusp}^{\rm classical} \simeq 0.3122881g.$$

Weak coupling: results

NG, F Levkovich-Maslyuk 2016

We have computed the first 7 orders of the expansion

$$\begin{split} \frac{\Omega}{4\pi} &= \hat{g}^2 + \\ &\hat{g}^4 \left[16L - 8 \right] + \\ &\hat{g}^6 \left[128L^2 + L \left(64 + \frac{64\pi^2 T}{3} \right) - 112 - \frac{8\pi^2}{3} + 72T\zeta_3 \right] + \\ &\hat{g}^8 \left[\frac{2048L^3}{3} + \frac{1024}{3} \pi^2 L^2 T + 2048L^2 + LT \left(768\zeta_3 + \frac{2176\pi^2}{3} \right) + \left(-768 - \frac{640\pi^2}{3} \right) L \\ &+ T^2 \left(128\pi^2 \zeta_3 - 760\zeta_5 \right) + T \left(384\zeta_3 - 640\pi^2 + \frac{32\pi^4}{9} \right) + \frac{1664\zeta_3}{3} + \frac{1216\pi^2}{9} - 1280 \right] + \dots \\ &\hat{g} \equiv g \cos \frac{\theta}{2} \ , \ T \equiv \frac{1}{\cos^2 \frac{\theta}{2}} \ , \ L \equiv \log \sqrt{8e^\gamma \pi \hat{g}^2} \end{split}$$

Pefect match with known results (first 3 orders and partial data at higher loops)

+ new simple formula for subleading logs to all orders

Ericksson, Semenoff, Szabo, Zarembo 2000; Pineda 2007; Drukker, Forini 2011; Stahlhofen 2012; Correa, Henn, Maldacen, Sever 2012; Bykov, Zarembo 2012; Prausa, Steinhauser 2013;

$$\begin{aligned} \frac{\Omega}{4\pi} &= \sum_{n=0}^{\infty} \hat{g}^{2n+2} \frac{16^n L^n}{n!} \times \\ & \left(1 + \frac{3n^2 - 5n}{4L} + \pi^2 T \frac{n^2 - n}{12L} + \mathcal{O}(1/L^2) \right) \end{aligned}$$

7-loop result. The term of order \hat{g}^{14} in $\frac{\Omega}{4\pi}$ is given by

$$\begin{array}{l} \frac{1048576L^6}{45} + \frac{524288}{9} L^5 \pi^2 T + \frac{6815744L^5}{15} + \frac{262144}{9} L^4 \pi^4 T^2 - 65536L^4 T \zeta_3 + \frac{40632320}{9} L^4 \pi^2 T \\ - \frac{15007744}{9} L^4 \pi^2 + 2752512L^4 + \frac{131072}{81} L^3 \pi^6 T^3 + 65536L^3 \pi^2 T^2 \zeta_3 + \frac{655360}{3} L^3 T^2 \zeta_5 \\ + \frac{12255232}{9} L^3 \pi^4 T^2 - \frac{64159744}{135} L^3 \pi^4 T - 65536L^3 T \zeta_3 + \frac{1330380}{3} B^3 \pi^2 T + \frac{3407872L^3 \zeta_3}{9} \\ - \frac{11141120}{9} L^3 \pi^2 + \frac{15073280L^3}{3} + \frac{2080768}{45} L^2 \pi^4 T^3 \zeta_3 - \frac{499712}{3} L^2 \pi^2 T^3 \zeta_5 - 129024L^2 T^3 \zeta_7 \\ + 32768L^2 \pi^6 T^3 - \frac{2828288}{405} L^2 \pi^6 T^2 - 36864L^2 T^2 \zeta_3^2 + \frac{11444224}{3} L^2 \pi^2 T^2 \zeta_3 + 20480L^2 T^2 \zeta_5 \\ + \frac{2351104}{3} L^2 \pi^4 T^2 - \frac{7610368}{9} L^2 \pi^2 T \zeta_3 - 40960L^2 T \zeta_5 - \frac{27344896}{45} L^2 \pi^4 T + 1671168L^2 T \zeta_3 \\ - 3817472L^2 \pi^2 T + \frac{7221248L^2 \pi^4}{45} + 2555904L^2 \zeta_3 + \frac{17096704L^2 \pi^2}{9} - \frac{6914048L^2}{3} + \frac{8192}{9} L \pi^6 T^4 \zeta_3 \\ - \frac{133120}{3} L \pi^4 T^4 \zeta_5 + 369152L \pi^2 T^4 \zeta_7 - 628992L T^4 \zeta_9 + \frac{1176832L \pi^8 T^3}{42525} + \frac{210944}{3} L \pi^2 T^3 \zeta_3^2 \\ - 71680L T^3 \zeta_3 \zeta_5 + 30720L T^3 \zeta_{6,2} + \frac{7872512}{15} L \pi^4 T^3 \zeta_3 - 1899520L \pi^2 T^3 \zeta_5 + 867328L T^3 \zeta_7 \\ + \frac{212992}{27} L \pi^6 T^3 - \frac{1150976}{15} L \pi^4 T^2 \zeta_3 + 665600L \pi^2 T^2 \zeta_5 - 268800L T^2 \zeta_7 + \frac{273752}{215} L \pi^6 T^2 \\ + 43008L T^2 \zeta_3^2 + \frac{757760}{3} L \pi^2 T^2 \zeta_3 - 1587200L T^2 \zeta_5 - \frac{14838784}{9} L \pi^4 T^2 - \frac{2152448 L \pi^6 T}{2835} \\ - 163840L T \zeta_3^2 + \frac{24051712}{9} L \pi^3 T \zeta_3 + 364544L T \zeta_5 + \frac{390412288}{90412288} L \pi^4 T + 2457600L T \zeta_3 \\ - \frac{39706624}{9} L \pi^2 T - \frac{5324800}{9} L \pi^2 \zeta_3 + \frac{1998848L \zeta_5}{5} - \frac{34199552L \pi^4}{3} + \frac{9797632L \zeta_3}{3} \\ - \frac{163840E L \tau^2}{9} - \frac{23560192L}{3} - \frac{11264}{5} \pi^6 T^5 \zeta_5 + \frac{73216}{5} \pi^6 T^5 \zeta_7 - 285120 \pi^2 T^5 \zeta_9 \\ + 1271952T^5 \zeta_{11} - \frac{10544\pi^{10}T^4}{93555} + \frac{91136}{9} \pi^4 T^4 \zeta_3^2 - \frac{50832}{3} \pi^2 T^4 \zeta_3 \zeta_5 + 179424 T^4 \zeta_5^2 \\ + 361088T^4 \zeta_3 \zeta_7 + \frac{16768}{3} \pi^2 T^4 \zeta_{6,2} - 26432T^4 \zeta_8, 2 + \frac{65533}{55} \pi^6 T^4 \zeta_3 - 63488\pi^4 T^4 \zeta_5 \\ + 401408\pi^2 T^4 \zeta_7 - 508032T^4 \zeta_9 + \frac{5137792\pi^6}{3} \pi^3 - 7$$

NG, F Levkovich-Maslyuk 2016

•

Numerical solution

We adapted the efficient algorithm of NG, F Levkovich-Maslyuk, Sizov 2015

Ladders limit

Double scaling limit $\theta \to i\infty, g \to 0, \frac{g}{e^{i\theta/2}} = \text{fixed}$

Selects only ladder diagrams

$$\begin{aligned} \frac{\Omega}{4\pi} &= \hat{g}^2 + \\ &\hat{g}^4 \left[16L - 8 \right] + \\ &\hat{g}^6 \left[128L^2 + L \left(64 + \frac{64\pi^2 T}{3} \right) - 112 - \frac{8\pi^2}{3} + 72T\zeta_3 \right] + \\ &\hat{g}^8 \left[\frac{2048L^3}{3} + \frac{1024}{3} \pi^2 L^2 T + 2048L^2 + LT \left(768\zeta_3 + \frac{2176\pi^2}{3} \right) + \left(-768 - \frac{640\pi^2}{3} \right) L \\ &+ T^2 \left(128\pi^2 \zeta_3 - 760\zeta_5 \right) + T \left(384\zeta_3 - 640\pi^2 + \frac{32\pi^4}{9} \right) + \frac{1664\zeta_3}{3} + \frac{1216\pi^2}{9} - 1280 \right] + \dots \end{aligned}$$

$$T \equiv \frac{1}{\cos^2 \frac{\theta}{2}} \to 0$$

$$\hat{g} \equiv g \cos \frac{\theta}{2} = \text{fixed}$$

$$\Omega = \Omega(\hat{g})$$

$$L \equiv \log \sqrt{8e^{\gamma} \pi \hat{g}^2}$$

Ladders limit

Double scaling limit $\theta \to i\infty, g \to 0, \frac{g}{e^{i\theta/2}} = \text{fixed}$

Bethe-Salpeter techniques reduce sum of ladder diagrams to a Schrodinger problem for the ground state

$$-F''(z) - \frac{4\hat{g}^2}{z^2 + 1}F(z) = -\frac{\Omega^2}{4}F(z)$$

$$\hat{g} \equiv g \cos \frac{\theta}{2} = \text{fixed}$$

Ericksson, Semenoff, Szabo, Zarembo 2000 Correa, Henn, Maldacen, Sever 2012

Captures all orders in \hat{g} including all finite-size effects

Can we get it from the QSC ?

Ladders limit in the QSC

Great simplification as 4th order Baxter equation on Q_i factorizes

$$-2(2\hat{g}^2 - \Omega u + u^2)q_1(u) + u^2q_1(u-i) + u^2q_1(u+i) = 0$$

$$q_1(u) \equiv \mathbf{Q}_1(u) e^{\pm \pi u} / \sqrt{u}$$

The Schrodinger equation

$$-F''(z) - \frac{4\hat{g}^2}{z^2 + 1}F(z) = -\frac{\Omega^2}{4}F(z)$$

maps to this Baxter equation after a Mellin-type transform!

$$q_1(u) = 2u \int_{i}^{+\infty} \frac{e^{-\frac{\Omega z}{2}}}{z^2+1} \left(\frac{z+i}{z-i}\right)^{iu} F(z) dz$$

(similar to ODE/IM ?)

Spectral curve for ABJM

Quantum Spectral Curve construction is known for ABJM theory

[A. Cavaglia, D. Fioravanti, N. G., R. Tateo]

Important difference is the position of the branch points:

SYM:
$$\pm 2g(\lambda) = \pm \frac{\sqrt{\lambda}}{2\pi}$$
 abjm: $\pm 2h(\lambda) = ?$

 $h(\lambda)$ enters into many important quantities: cusp dimension, magnon dispertion

Finding Interpolation function h

In the near BPS limit we should be able to match with localization

Comparing cross-ratios of the branch points: $\kappa = 4 \sinh(2\pi h)$

Interpolation function h

Is ABJ theory Integrable?

Integrability structure of ABJM is too rigid. Impossible to deform

[Cavaglia, N.G., Levkovich-Maslyuk]

$$h(\lambda_1, \lambda_2) = \frac{1}{4\pi} \log\left(\frac{ab+1}{a+b}\right)$$

 $\lambda_1 = -\frac{1}{4\pi^2} \oint_a^{1/a} \omega(Z) \frac{dZ}{Z} \ , \ \lambda_2 = +\frac{1}{4\pi^2} \oint_{-b}^{-1/b} \omega(Z) \frac{dZ}{Z} \qquad \qquad \omega(Z) = \log\left(\sqrt{(Z+b)(Z+1/b)} - \sqrt{(Z-a)(Z-1/a)}\right)$

Tests of the conjecture

[Drukker, Marino, Putrov]

1) Reality

$$4e^{2\pi i(B-1/2)} = a + \frac{1}{a} + b + \frac{1}{b}, \quad 2\kappa e^{\pi i B} = a + \frac{1}{a} - b - \frac{1}{b}, \quad u = \frac{\kappa^2}{8} - \cos 2\pi B$$

$$h(\lambda_1, \lambda_2) = \frac{1}{4\pi} \log\left(u + \sqrt{u^2 - 1}\right)$$

2) Weak coupling

[Minahan, Ohlsson Sax, Sieg]

[Leoni, Mauri, Minahan, Ohlsson Sax, Santambrogio, Sieg, Tartaglino-Mazzucchelli]

$$h^{2}(\lambda_{1},\lambda_{2}) = \lambda_{1}\lambda_{2} - \frac{\pi^{2}}{6}\lambda_{1}\lambda_{2}(\lambda_{1}+\lambda_{2})^{2} + \frac{\pi^{4}}{360}\lambda_{1}\lambda_{2}(\lambda_{1}+\lambda_{2})^{2}(3\lambda_{1}^{2}+3\lambda_{2}^{2}+79\lambda_{1}\lambda_{2})$$

1) Partial weak coupling

[Minahan, Ohlsson Sax, Sieg] [Bianchi, Lioni]

$$h^{2}(\lambda_{1},\lambda_{2}) = \frac{\lambda_{1}}{\pi} \sin\left(\pi\lambda_{2}\right) + \frac{\lambda_{1}^{2}}{3} \sin^{2}\left(\frac{\pi\lambda_{2}}{2}\right) \left(1 - 5\cos\left(\pi\lambda_{2}\right)\right)_{\text{[Honda]}}$$

2) Strong coupling

[Aharony, Hashimoto, Hirano, Ouyang]

$$h(\lambda_1, \lambda_2) = \sqrt{\frac{\hat{\lambda}}{2}} - \frac{\log(2)}{2\pi} - \frac{e^{-2\pi\sqrt{2\hat{\lambda}}}\cos(2\pi B)}{\pi} \left(1 + \frac{1}{\pi 2\sqrt{2\hat{\lambda}}}\right)$$
$$\hat{\lambda} = \frac{\lambda_1 + \lambda_2}{2} - \frac{1}{2}\left(B - \frac{1}{2}\right)^2 - \frac{1}{24} = \frac{\lambda_1 + \lambda_2}{2} - \frac{1}{2}(\lambda_1 - \lambda_2)^2 - \frac{1}{24}$$

Seinberg-like symmetry

4) Expected symmetry duality between two gauge group

[Aharony, Bergman, Jafferis]

$$U(N_1)_k \times U(N_2)_{-k}$$
 and $U(2N_2 - N_1 + k)_k \times U(N_1)_{-k}$
 $\lambda_1, \lambda_2) \rightarrow (2\lambda_2 - \lambda_1 + 1, \lambda_1)$

So the expression is clearly invariant

$$h(\lambda_1, \lambda_2) = \frac{1}{4\pi} \log\left(\frac{ab+1}{a+b}\right)$$
 32

Conclusions

- More general systems with different symmetries?
- Classification of all consistent matching conditions is needed.
- How Qs are related to the wave functions? Applications for 3-point correlators?
- Relation to Integrability found in localization?
- Etc...

BFKL regime

BFKL regime

Important class of single trace operators:

 trD^SZ^2 + permutations

Spectrum for different spins:

[Brower, Polchinski, Strassler, -Itan `06]

In this regime SYM is undistinguishable from the real QCD

Analytic structure at finite coupling

BFKL in QCD

• At the LO:

Jaroszewicz, 1982 Lipatov 1986 Kotikov,Lipatov 2002

$$\chi(\gamma) = 2\Psi(1) - \Psi(\gamma) - \Psi(1 - \gamma), \quad \Psi(\gamma) = \Gamma'(\gamma) / \Gamma(\gamma)$$

• At NLO:

Kotikov,Lipatov 2002 Kotikov,Lipatov 2000

$$\begin{split} \delta(\gamma) &= -\left[\left(\frac{11}{3} - \frac{2n_f}{3N_c} \right) \frac{1}{2} \left(\chi^2(\gamma) - \Psi'(\gamma) + \Psi'(1-\gamma) \right) - \left(\frac{67}{9} - \frac{\pi^2}{3} - \frac{10}{9} \frac{n_f}{N_c} \right) \chi(\gamma) \right. \\ &\left. - 6\zeta(3) + \frac{\pi^2 \cos(\pi\gamma)}{\sin^2(\pi\gamma)(1-2\gamma)} \left(3 + \left(1 + \frac{n_f}{N_c^3} \right) \frac{2 + 3\gamma(1-\gamma)}{(3-2\gamma)(1+2\gamma)} \right) \right. \\ &\left. - \Psi''(\gamma) - \Psi''(1-\gamma) - \frac{\pi^3}{\sin(\pi\gamma)} + 4\phi(\gamma) \right] \,. \end{split}$$

$$\begin{split} \phi(\gamma) &= -\int_0^1 \frac{dx}{1+x} \left(x^{\gamma-1} + x^{-\gamma} \right) \int_x^1 \frac{dt}{t} \ln(1-t) \\ &= \sum_{n=0}^\infty (-1)^n \left[\frac{\Psi(n+1+\gamma) - \Psi(1)}{(n+\gamma)^2} + \frac{\Psi(n+2-\gamma) - \Psi(1)}{(n+1-\gamma)^2} \right] \end{split}$$

BFKL regime

 $S \rightarrow -1, g \rightarrow 0, \frac{g^2}{S+1} =$ fixed Resums contributions from all loop orders

N=4 SYM should give the highest transcendentality part of the QCD result

$$S = -1 + \sum_{n=1}^{\infty} g^{2n} \left[F_n \left(\frac{\Delta - 1}{2} \right) + F_n \left(\frac{-\Delta - 1}{2} \right) \right]$$

$$S_a(x) = \sum_{k=1}^{x} \frac{(\operatorname{sign}(a))^k}{k^{|a|}}$$

$$S_{a,b,c,\dots}(x) = \sum_{k=1}^{x} (\operatorname{sign}(a))^k S_{b,c,\dots}(k)$$

Leading order

$$F_1(x) = -4S_1(x)$$

Reproduced from QSC in [Alfimov,Gromov,Kazakov 2014]

NLO
$$F_2(x) = 4\left(-\frac{3}{2}\zeta(3) + \pi^2 \log 2 + \frac{\pi^2}{3}S_1(x) + 2S_3(x) + \pi^2 S_{-1}(x) - 4S_{-2,1}(x)\right)$$

NNLO $F_3(x) = ?????$

Basis for NNLO

Each term has transcendentality 5

harmonic sums with transcendentality up to 5, and constants: $\pi, \log(2), \zeta(3), \zeta(5), \operatorname{Li}_4(1/2), \operatorname{Li}_5(1/2)$

In total 288 elements

We derive analytic constraints from QSC for expansion around poles at $\Delta_0 = 1, 3, 5, 7, \ldots$

Our result: BFKL at NNLO

$$\begin{split} S &= -1 + \sum_{n=1}^{\infty} g^{2n} \left[F_n \left(\frac{\Delta - 1}{2} \right) + F_n \left(\frac{-\Delta - 1}{2} \right) \right] & \frac{1}{256} F_3 = \\ & -\frac{5S_{-5}}{8} - \frac{S_{-4,1}}{2} + \frac{S_{1}S_{-3,1}}{2} + \frac{S_{-3,2}}{2} - \frac{5S_{2}S_{-2,1}}{4} \\ & + \frac{S_{-4}S_1}{4} + \frac{S_{-3}S_2}{8} + \frac{3S_{3,-2}}{4} - \frac{3S_{-3,1,1}}{2} - S_1S_{-2,1,1} \\ & + S_{2,-2,1} + 3S_{-2,1,1,1} - \frac{3S_{-2}S_3}{4} - \frac{S_5}{8} + \frac{S_{-2}S_1S_2}{4} \\ & + \pi^2 \left[\frac{S_{-2,1}}{8} - \frac{7S_{-3}}{48} - \frac{S_{-2}S_1}{12} + \frac{S_{1}S_2}{48} \right] & \text{Found from} \\ & \text{iterative solution of QSC} \\ & + \left[2\text{Li}_4 - \frac{\pi^2 \log^2 2}{12} + \frac{\log^4 2}{12} \right] (S_{-1} - S_1) - \pi^4 \left[\frac{2S_{-1}}{45} - \frac{S_1}{96} \right] \\ & + \frac{\log^5 2}{60} - \frac{\pi^2 \log^3 2}{36} - \frac{2\pi^4 \log 2}{45} - \frac{\pi^2 \zeta_3}{24} + \frac{49\zeta_5}{32} - 2\text{Li}_5 \end{split}$$

Confirmed recently by an independent calculation by Caron-Huot, Herran