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Krichever map

Let C be a smooth projective curve, p a point, f a formal
parameter at p. Then Laurent series expansion in t defines an
embedding

H(C\ {p}, 0) = C((t)).
Let W be the image of this embedding. Then we have
identifications

WnC[f]] = H(C,0) = C, C((1)/(W +C[ltll) = H'(C,0).
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Thus, we get a point of the Sato Grassmannian SG
parametrizing subspaces of C((t)) such that W N CJ[t]] = C and
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recover the data (C, p, t) from W.
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Let C be a smooth projective curve, p a point, f a formal
parameter at p. Then Laurent series expansion in t defines an
embedding

H(C\ {p}, 0) = C((t)).
Let W be the image of this embedding. Then we have
identifications

WnC[f]] = H(C,0) = C, C((1)/(W +C[ltll) = H'(C,0).

Thus, we get a point of the Sato Grassmannian SG
parametrizing subspaces of C((t)) such that W N CJ[t]] = C and
C((t))/(W + CJ[1]]) is finite dimensional. Furthermore, one can
recover the data (C, p, t) from W.

Remark. This construction is related to the action of the
Virasoro algebra on some natural line bundles over the moduli
spaces of curves, studied by Kontsevich,
Beilinson-Schechtman, and Arbarello-De Concini-Kac-Procesi.



Generalized Krichever map

Slight generalization: consider a curve C with n marked points
p1, ..., Ppn with formal parameters tq, ..., t,. Get an embedding

H(C\ {p1,....pn}, 0) = H = P C((t)).

i=1

This is still a point of the appropriate Sato Grassmannian
SG(H).



Generalized Krichever map

Slight generalization: consider a curve C with n marked points
p1, ..., Ppn with formal parameters tq, ..., t,. Get an embedding

H(C\ {p1,....pn}, 0) = H = P C((t)).

i=1

This is still a point of the appropriate Sato Grassmannian
SG(H).

We would like to use this construction to obtain
compactifications of the moduli space of curves Mg ,. Note
that the above construction works for a singular projective curve
(reduced and connected), provided O(py + ... + pn) is ample,
i.e., there is at least one marked point on each irreducible
component of C.



Moduli of curves with nonspecial divisors

Consider the moduli stack U5, of (C, p1, ..., pn), where C has
arithmetic genus g, p1, ..., pn are smooth and distinct, such
that O(py + ... + pn) is ample and nonspecial, i.e.,
H'(C,0O(p; + ...+ pn)) = 0. Consider enhanced spaces

~ ~ (C* n

uns,(oo) ® Ugysn () uggﬂ
corresponding to choices of formal parameters or nonzero
tangent vectors at each marked point. Here & is the group of
formal changes

li— ti+ ng,'l‘,-2 =+ C3,,'tl3 + ...



Moduli of curves with nonspecial divisors

Consider the moduli stack U5, of (C, p1, ..., pn), where C has
arithmetic genus g, p1, ..., pn are smooth and distinct, such
that O(py + ... + pn) is ample and nonspecial, i.e.,
H'(C,0O(p; + ...+ pn)) = 0. Consider enhanced spaces

~ ~ (C* n

uns,(oo) ® Ugi () uggﬂ
corresponding to choices of formal parameters or nonzero
tangent vectors at each marked point. Here & is the group of
formal changes

li— ti+ 027,'1‘,-2 =+ C3,,'tl3 + ...

Note that we necessarily have n > g.

Example. For g = 0 the restriction on marked points is that
O(p1 + ... + pn) is ample. The moduli stack {5, is related to
Boggi-Kontsevich compactification of Mg p,
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Moduli of curves with nonspecial divisors

There is a natural map from Ll”s to the Grassmannian
G(n— g, n) defined as foIIows The short exact sequence

0 — O¢ — O¢(p +...+pn)+€BTp,C—>O
i—1
gives rise to an exact sequence

n
B 75.C = H'(Oc) = H'(Oc(pr + -+ pn) =0,
i=1
The kernel of the first arrow is an (n — g)-dimensional subspace
in C",



Moduli of curves with nonspecial divisors

There is a natural map from Ll”s to the Grassmannian
G(n— g, n) defined as foIIows The short exact sequence

0 — O¢ — O¢(p +...+pn)+€BTp,C—>O
i—1
gives rise to an exact sequence

n

P 7o C = H'(Oc) = H'(Oc(p1 + - - + pn)) = O,

i=1
The kernel of the first arrow is an (n — g)-dimensional subspace
in C".
For each subset of indices S C [1, n] with |S| = g, the preimage
of the corresponding standard cell in G(n — g, n) is the open
subset U(S) C UJS, consisting of (C, p + ... + pp) such that

H'(C,O(Siespi)) = 0.

[



Moduli of curves with nonspecial divisors

Theorem. The Krichever map defines a locally closed
embedding /") < SG(H).

Its image is the closed subset of the locus SG"(H) consisting
of W such that H = W + H~_1. The image consists of W such
that W-W c W.

The action of & on SG"(H) is free, and the quotient has an
open covering by infinite-dimensional affine spaces.

The moduli space Ug7, is a scheme of finite type, affine over the
Grassmannian G(n — g, n).
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The invariant subscheme of the diagonal C* C (C*)" in U5, is a
section of a map to G(n— g, n). C*-action has positive weights.
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Theorem. The Krichever map defines a locally closed
embedding /") < SG(H).

Its image is the closed subset of the locus SG"(H) consisting
of W such that H = W + H~_1. The image consists of W such
that W-W c W.

The action of & on SG"(H) is free, and the quotient has an
open covering by infinite-dimensional affine spaces.

The moduli space Ug7, is a scheme of finite type, affine over the
Grassmannian G(n — g, n). N

There is a natural (C*)"-action on U5, (rescaling the tangent
vectors at the marked points), compatible with the standard
(C*)"-action on G(n — g, n). N

The invariant subscheme of the diagonal C* C (C*)" in U5, is a
section of a map to G(n — g, n). C*-action has positive weights.
Remark. Taking GIT quotients of ¢g$, one gets birational

projective models of My p,. ,



Moduli of curves with nonspecial divisors, g =n =1

Example. g = n= 1. The algebra O(C \ p) is generated by x
and y such that

Using the ambiguity x — x + a, y — y + bx + ¢, we can choose
x and y uniquely so that

y?2 =x3+px +q.

Thus, UJS = A2
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Example. g = n= 1. The algebra O(C \ p) is generated by x
and y such that

Using the ambiguity x — x + a, y — y + bx + ¢, we can choose
x and y uniquely so that

y?2 =x3+px +q.

Thus, UPS = A2,

C* acts with the weights (2, 3).

The unique C*-invariant point, p = g = 0, corresponds to the
cuspidal cubic.



Moduli of curves with nonspecial divisors, g =0

Example. g =0, n> 3. The algebra O(C \ {p1,...,pn}) is
generated by x4, ..., xn, where x; € H°(C, O(p;)), and
X; = { +.... The defining relations are

XiXj = qjiXj + ojiX; + Cjj, for i # j, with

(*) Cjj = QjkQjx — Qi — Qi

Normalization: «; ;11 = 0. Then x; are unique.



Moduli of curves with nonspecial divisors, g =0

Example. g =0, n> 3. The algebra O(C \ {p1,...,pn}) is
generated by x4, ..., xn, where x; € H°(C, O(p;)), and
X; = { +.... The defining relations are

XiXj = qjiXj + ojiX; + Cjj, for i # j, with

(*) Cjj = QjkQjx — Qi — Qi

Normalization: «; ;11 = 0. Then x; are unique.
The relation (x) gives the defining equations of /f°, same as
the miniversal deformation of the coordinate cross in C".



Moduli of curves with nonspecial divisors, g =0

Example. g =0, n> 3. The algebra O(C \ {p1,...,pn}) is
generated by x4, ..., xn, where x; € H°(C, O(p;)), and
X; = { +.... The defining relations are

XiXj = qjiXj + ojiX; + Cjj, for i # j, with

(*) Cjj = QjkQjx — Qi — Qi

Normalization: «; ;11 = 0. Then x; are unique.
The relation (x) gives the defining equations of /f°, same as
the miniversal deformation of the coordinate cross in C".

Remark. The only singularities that a reduced curve of
arithmetic genus 0 can have are rational m-fold points.



Moduli of curves with nonspecial divisors, g =0

(C*)-action: (A~")*aj = Ajevj.

For each character x(A) = A" ... A" of (C*)" can consider the
GIT-quotient 24§53, /. (C*)".

If a; > 0,...,a, > 0then stable (=semistable) points
correspond to (C, py, . . ., pn) such that each irreducible
component has > 3 special points. This is exactly
Boggi-Kontsevich moduli space.
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(C*)-action: (A~")*aj = Ajevj.

For each character x(A) = A" ... A" of (C*)" can consider the
GIT-quotient 24§53, /. (C*)".

If a; > 0,...,a, > 0then stable (=semistable) points
correspond to (C, py, . . ., pn) such that each irreducible
component has > 3 special points. This is exactly
Boggi-Kontsevich moduli space.

We get a realization of this space by explicit equations in
(P"=3)". Namely, in equation (x) we should view «;; as
homogeneous coordinates on the ith copy of P"—3,

Remark. For n > 5 it is not known whether the scheme Z/Nlasn (or
its GIT-quotient) is normal or even reduced.



Case g = 1: fundamental decomposition

Proposition. A curve (C, p1,...,pn) isin Zj{’sn if and only if it has
a fundamental decomposition

C=EURyU...UR;,

where R; are connected tails of arithmetic genus 0 attached to
E transversally at distinct points, and E is of one of the
following types:

m smooth elliptic curve;

m cycle of projective lines (standard m-gon);

m elliptic m-fold curve.
Furthermore, there should be at least one marked point on
every irreducible component.



Case g = 1: fundamental decomposition

Proposition. A curve (C, p1,...,pn) isin Zj{’sn if and only if it has
a fundamental decomposition

C=EURyU...UR;,

where R; are connected tails of arithmetic genus 0 attached to
E transversally at distinct points, and E is of one of the
following types:

m smooth elliptic curve;

m cycle of projective lines (standard m-gon);

m elliptic m-fold curve.
Furthermore, there should be at least one marked point on
every irreducible component.

Elliptic m-fold curves.
m m = 1: cuspidal cubic;
m m = 2: union of two projective lines glued in a tacnode;
m m > 3: union of m generic lines through a point in P71,



Case g = 1: GIT stability conditions

Fix a rational character x = (ay, ..., an) of (C*)". Let
(C,p1,...,Ppn) be in our moduli space, with fundamental
decomposition C = EU Ry U...U R,. For a marked point p;
lying on an irreducible component C’ ~ P!, we denote by N(p;)
the number of special points on C'. Define Iy C I C [1,n] and
J C[1,n] by

mJ={j|p¢E N(p) >3}

m/={i|pekE}

m [y = 0 if E is at most nodal; otherwise,

lo={iel|Np)<2}.



Case g = 1: GIT stability conditions

Fix a rational character x = (ay, ..., an) of (C*)". Let
(C,p1,...,Ppn) be in our moduli space, with fundamental
decomposition C = EU Ry U...U R,. For a marked point p;
lying on an irreducible component C’ ~ P!, we denote by N(p;)
the number of special points on C'. Define Iy C I C [1,n] and
J C[1,n] by

mJ={j|p¢E N(p) >3}

m/={i|pekE}

m [y = 0 if E is at most nodal; otherwise,

lo={iel|Np)<2}.

Theorem. (C, py,...,pn) is 7*O(1) ® x-semistable if and only if

m g >0foralli;a=0forigluUdJ;

D as<t;

] Ziel a > 1.

All these GIT quotients are projective.
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Case g = 1: GIT stability conditions

Example 1. All a; > 1. Then stability (=semistability) means
that there are > 3 special points on the normalization of every
rational component of C. N

Equivalently, there exists a birational map f: C — C, where
(C,p1,---,Pn) is Deligne-Mumford stable of genus 1, f

contracts the unmarked components in C.
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contracts the unmarked components in C.

Example 2. a; = a, a € (1, -15). Then stability means that

C = E (equivalently, C is Gorenstein with trivial w¢,
equivalently, H'(C, O(p;)) = 0 for each i), and (C, py, ..., Pn)
has no infinitesimal symmetries.



Case g = 1: GIT stability conditions

Example 1. All a; > 1. Then stability (=semistability) means
that there are > 3 special points on the normalization of every
rational component of C. N

Equivalently, there exists a birational map f: C — C, where
(C,p1,---,Pn) is Deligne-Mumford stable of genus 1, f
contracts the unmarked components in C.

Example 2. a; = a, a € (1, -15). Then stability means that

C = E (equivalently, C is Gorenstein with trivial w¢,
equivalently, H'(C, O(p;)) = 0 for each i), and (C, py, ..., Pn)
has no infinitesimal symmetries.

The moduli spaces in both Examples were first constructed by
David Smyth. The moduli space in Example 2 was studied in
[P-Lekili]. We showed that it is a normal Gorenstein projective
scheme, given by explicit equations.
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Case g = 1: Strongly non-special curves

Consider (C, p, ..., pn) with H'(C, O(p;)) = 0 for each i, as in
Example 2. Fix a nonzero global section w € H(C, w¢).
Assume n > 3. For i # j, there is h; € HO(C, O(p; + pj)),
unique up to adding a constant, such that Resp, hjw) =1,
Resp, hjw) = —1.
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Consider (C, p, ..., pn) with H'(C, O(p;)) = 0 for each i, as in
Example 2. Fix a nonzero global section w € H(C, w¢).
Assume n > 3. For i # j, there is h; € HO(C, O(p; + pj)),
unique up to adding a constant, such that Resp, hjw) =1,
Resp, hjw) = —1.

Normalize hyo and hy3z by hi2(p3) = 0, hyz(p2) = 0. Then the
algebra O(C\ {p1,-..,Pn}) is generated by

Xo = hyo, ..., Xn = hyp, with defining relations

XiXj = XoX3 + CjjXj + CjiXj + d,'j,
XoX2 = X5X3 + axoXz + bxo + Cx3 + d,
where ¢ = hyi(X;).



Case g = 1: Strongly non-special curves

Consider (C, p, ..., pn) with H'(C, O(p;)) = 0 for each i, as in
Example 2. Fix a nonzero global section w € H°(C, w¢).
Assume n > 3. For i # j, there is h; € HO(C, O(p; + pj)),
unique up to adding a constant, such that Resp, hjw) =1,
Resp, hjw) = —1.
Normalize hyo and hy3z by hi2(p3) = 0, hyz(p2) = 0. Then the
algebra O(C\ {p1,-..,Pn}) is generated by
Xo = hyo, ..., Xn = hyp, with defining relations
XiXj = XoX3 + CjjXj + CjiXj + d,'j,

XoX2 = X5X3 + axoXz + bxo + Cx3 + d,
where ¢ = hy;(x;).
The (normalized) coefficients become (weighted) projective
coordinates on the moduli space. For n > 5 all coordinates are

expressed in terms of ¢; and a (which have weight 1). One can
write explicitly defining equations between them.



Casen=g

Set D = py + ... + pg. Then for each i there exist
x; € H(C,O(D + py)), yi € H°(C,O(D + 2p;)) such that

at p;. The algebra O(C \ D) is generated by
(X1a"'7xgay17"'7.yg)'
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choose x; and y; uniquely so that
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Casen=g

Set D = py + ... + pg. Then for each i there exist
x; € H(C,O(D + py)), yi € H°(C,O(D + 2p;)) such that

at p;. The algebra O(C \ D) is generated by
(X1a"'7xgay17"'7.yg)'

Using the ambiguity x; — x + a;, y; — y; + bix; + ¢j, we can
choose x; and y; uniquely so that

yi —xt € H(C,0(3D)). x(yf —x7) € H’(C,0(4D)).

Note that (x, yix") is a basis of O(C\ D).
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Case n = g > 2: equations of the universal curve

XjXj = Oéj/}// + iy +iiXi + Vi X + Zk;ﬁ// CUXk + alj7
Xiyj = O‘UX + Bﬂy/ Y X 0+ Dz € Xk + b,/,
Yiy; = Bjix? + /5,,x +ejiYi+ ey + bixi + X + Zk;é,/ Xk + Ujj,
yi2 - X/3 + PiXi + Z/;éIQJ/y/ + Z/;él k/XI +ai,
where i and j are distinct.



Case n = g > 2: equations of the universal curve

XiXj = Oéj/y/ + iy +iiXi + Vi X + Zk;ﬁ// C,j Xk + alj7
XiYj = O‘UX + Bj!}’/ + iy + iXi + 0jiXj + Zk#,] e,ij + b,/,
ylyj 5//)( + /jljx + jiYi + ey + wjlxl + YiXj + Zk;ﬁ:/ i Xk + Ujj,
y2 =x3+ pixi + Zﬁé,gdyj + 3 kX + ai,
where i and j are distinct.

Using Grébner basis technique find:

k
Cij = QikQjk;

¢ - —af,

2
li = €ji — auajl )

etc., so that all the coefficients are expressed in terms of
(i, Bij, vij» €, Pi)- These coordinates satisfy further equations,
and Ug5, is the corresponding affine scheme.
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Case n= g > 2: GIT quotients

GIT-stability condition depends on a character

x(A) = (ai,...,an) of (C*)".

All GIT-quotients are projective, empty unless (ay, ..., an)
belongs to the cone generated by (2e; — ¢).
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For x € Cq every (C, py, ..., pg) with smooth C is x-stable.



Case n= g > 2: GIT quotients

GIT-stability condition depends on a character

x(A) = (ai,...,an) of (C*)".

All GIT-quotients are projective, empty unless (ay, ..., an)
belongs to the cone generated by (2e; — ¢).

Wall structure in R": the codim-1 walls are cones spanned by
subsets of (2e; — e;,3e; — €}, €)).

Main chamber Cy: a; > 0,...,ap, > 0.
For x € Cq every (C, py, ..., pg) with smooth C is x-stable.

Question. Can one describe geometrically the stability
condition in the main chamber?



Moduli of A, -structures

Recall that an A..-algebra is a graded vector space A with
operations mj, : A" — A of degree 2 — n, for n > 1, satisfying
Asc-identities 3, ,[m;, mj] = 0 (where [+, ] is the
Gerstenhaber bracket).
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Asc-identities 3, ,[m;, mj] = 0 (where [+, ] is the
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For a given finite-dimensional associative algebra A can
consider all A,-structures (m,) on A with my = 0 and m» the
given product on A. These are parametrized by an
infinite-dimensional affine scheme A, (A). There is a natural
action of an infinite-dimensional unipotent group & of gauge
equivalences on A, (A). We consider the moduli space
Moo(A) = Ax(A)/ 6.



Moduli of A, -structures

Recall that an A..-algebra is a graded vector space A with
operations mj, : A" — A of degree 2 — n, for n > 1, satisfying
Asc-identities 3, ,[m;, mj] = 0 (where [+, ] is the
Gerstenhaber bracket).

For a given finite-dimensional associative algebra A can
consider all A,-structures (m,) on A with my = 0 and m» the
given product on A. These are parametrized by an
infinite-dimensional affine scheme A, (A). There is a natural
action of an infinite-dimensional unipotent group & of gauge
equivalences on A, (A). We consider the moduli space
Mao(A) = As(A)/6.

Theorem. Assume HH'(A); = 0 for j < 0. Then the action of &
on A, (A) admits a section, so that M, (A) is an affine
scheme. If in addition HH?(A) ¢ is finite-dimensional then
Mo (A) is of finite type.

(Here HH*(A) is the Hochschild cohomology.)



Moduli of curves and moduli of A,.-structures

Given a curve (C,py, ..., pg) such that H'(O(ps +...+pg)) =0
consider the algebra E = Ext*(G, G), where

G=0c®0p @...0Op,.

Generators: A; € Hom(Og, Op,), Bj € Ext'(Op,, O¢). Note that
the classes ByAq, ..., ByAy form a basis of
Ext'(O¢, O¢) = H'(C, ).
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the classes ByAq, ..., ByAy form a basis of

Ext'(O¢, O¢) = H'(C,0).

A choice of nonzero tangent vectors at py, ..., pn gives an
isomorphism of E with the fixed algebra Ey4. By homological
perturbation, for each curve (C, p1, ..., pn) there is a canonical
gauge equivalence class of A, -structures on Eg.
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Given a curve (C,py, ..., pg) such that H'(O(ps +...+pg)) =0
consider the algebra E = Ext*(G, G), where

G=0c®0p @...0Op,.

Generators: A; € Hom(O¢, Op,), B; € Ext'(Op,, O¢). Note that
the classes ByAq, ..., ByAy form a basis of

Ext'(O¢, O¢) = H'(C,0).

A choice of nonzero tangent vectors at py, ..., pn gives an
isomorphism of E with the fixed algebra Ey4. By homological
perturbation, for each curve (C, p1, ..., pn) there is a canonical
gauge equivalence class of A, -structures on Eg.

Theorem. This defines an isomorphism UJ1$, ~ Mo (Eg).



Moduli of curves and moduli of A,.-structures

Given a curve (C,py, ..., pg) such that H'(O(ps +...+pg)) =0
consider the algebra E = Ext*(G, G), where

G=0c®0p @...0Op,.

Generators: A; € Hom(O¢, Op,), B; € Ext'(Op,, O¢). Note that
the classes ByAq, ..., ByAy form a basis of

Ext'(O¢, O¢) = H'(C,0).

A choice of nonzero tangent vectors at py, ..., pn gives an
isomorphism of E with the fixed algebra Ey4. By homological
perturbation, for each curve (C, p1, ..., pn) there is a canonical
gauge equivalence class of A, -structures on Eg.

Theorem. This defines an isomorphism UJ1$, ~ Mo (Eg).
Remark. There is a similar interpretation of Z]é’f‘;, forn> g as
moduli of A-structures. In this case ms is also allowed to vary.
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