Alexander Polishchuk

University of Oregon

1

Outline

- 1. Moduli of curves with nonspecial divisors and the Krichever map.
- 2. The case g = 1.
- 3. The case n = g.
- 4. Relation to moduli of A_{∞} -structures.

Krichever map

Let *C* be a smooth projective curve, p a point, *t* a formal parameter at *p*. Then Laurent series expansion in *t* defines an embedding

$$H^0(\mathcal{C} \setminus \{\mathcal{p}\}, \mathcal{O}) \hookrightarrow \mathbb{C}((t)).$$

Let W be the image of this embedding. Then we have identifications

 $W \cap \mathbb{C}[[t]] = H^0(\mathcal{C}, \mathcal{O}) = \mathbb{C}, \ \mathbb{C}((t))/(W + \mathbb{C}[[t]]) = H^1(\mathcal{C}, \mathcal{O}).$

Thus, we get a point of the Sato Grassmannian *SG* parametrizing subspaces of $\mathbb{C}((t))$ such that $W \cap \mathbb{C}[[t]] = \mathbb{C}$ and $\mathbb{C}((t))/(W + \mathbb{C}[[t]])$ is finite dimensional. Furthermore, one can recover the data (*C*, *p*, *t*) from *W*.

Remark. This construction is related to the action of the Virasoro algebra on some natural line bundles over the moduli spaces of curves, studied by Kontsevich, Beilinson-Schechtman, and Arbarello-De Concini-Kac-Procesi.

Krichever map

Let *C* be a smooth projective curve, p a point, *t* a formal parameter at *p*. Then Laurent series expansion in *t* defines an embedding

$$H^0(\mathcal{C} \setminus \{p\}, \mathcal{O}) \hookrightarrow \mathbb{C}((t)).$$

Let W be the image of this embedding. Then we have identifications

 $W \cap \mathbb{C}[[t]] = H^0(\mathcal{C}, \mathcal{O}) = \mathbb{C}, \ \mathbb{C}((t))/(W + \mathbb{C}[[t]]) = H^1(\mathcal{C}, \mathcal{O}).$

Thus, we get a point of the Sato Grassmannian *SG* parametrizing subspaces of $\mathbb{C}((t))$ such that $W \cap \mathbb{C}[[t]] = \mathbb{C}$ and $\mathbb{C}((t))/(W + \mathbb{C}[[t]])$ is finite dimensional. Furthermore, one can recover the data (C, p, t) from *W*.

Remark. This construction is related to the action of the Virasoro algebra on some natural line bundles over the moduli spaces of curves, studied by Kontsevich, Beilinson-Schechtman, and Arbarello-De Concini-Kac-Procesi.

Krichever map

Let *C* be a smooth projective curve, p a point, *t* a formal parameter at *p*. Then Laurent series expansion in *t* defines an embedding

$$H^0(\mathcal{C} \setminus \{p\}, \mathcal{O}) \hookrightarrow \mathbb{C}((t)).$$

Let W be the image of this embedding. Then we have identifications

 $W \cap \mathbb{C}[[t]] = H^0(\mathcal{C}, \mathcal{O}) = \mathbb{C}, \ \mathbb{C}((t))/(W + \mathbb{C}[[t]]) = H^1(\mathcal{C}, \mathcal{O}).$

Thus, we get a point of the Sato Grassmannian *SG* parametrizing subspaces of $\mathbb{C}((t))$ such that $W \cap \mathbb{C}[[t]] = \mathbb{C}$ and $\mathbb{C}((t))/(W + \mathbb{C}[[t]])$ is finite dimensional. Furthermore, one can recover the data (C, p, t) from *W*.

Remark. This construction is related to the action of the Virasoro algebra on some natural line bundles over the moduli spaces of curves, studied by Kontsevich,

Beilinson-Schechtman, and Arbarello-De Concini-Kac-Procesi.

Generalized Krichever map

Slight generalization: consider a curve *C* with *n* marked points p_1, \ldots, p_n with formal parameters t_1, \ldots, t_n . Get an embedding

$$H^0(\mathcal{C}\setminus\{\mathcal{p}_1,\ldots,\mathcal{p}_n\},\mathcal{O})\hookrightarrow\mathcal{H}:=\bigoplus_{i=1}^n\mathbb{C}((t_i)).$$

This is still a point of the appropriate Sato Grassmannian $SG(\mathcal{H})$.

We would like to use this construction to obtain compactifications of the moduli space of curves $\mathcal{M}_{g,n}$. Note that the above construction works for a singular projective curve (reduced and connected), provided $\mathcal{O}(p_1 + \ldots + p_n)$ is ample, i.e., there is at least one marked point on each irreducible component of *C*.

Generalized Krichever map

Slight generalization: consider a curve *C* with *n* marked points p_1, \ldots, p_n with formal parameters t_1, \ldots, t_n . Get an embedding

$$H^0(\mathcal{C}\setminus\{\mathcal{p}_1,\ldots,\mathcal{p}_n\},\mathcal{O})\hookrightarrow\mathcal{H}:=\bigoplus_{i=1}^n\mathbb{C}((t_i)).$$

This is still a point of the appropriate Sato Grassmannian $SG(\mathcal{H})$.

We would like to use this construction to obtain compactifications of the moduli space of curves $\mathcal{M}_{g,n}$. Note that the above construction works for a singular projective curve (reduced and connected), provided $\mathcal{O}(p_1 + \ldots + p_n)$ is ample, i.e., there is at least one marked point on each irreducible component of *C*.

Consider the moduli stack $\mathcal{U}_{g,n}^{ns}$ of (C, p_1, \ldots, p_n) , where *C* has arithmetic genus g, p_1, \ldots, p_n are smooth and distinct, such that $\mathcal{O}(p_1 + \ldots + p_n)$ is ample and nonspecial, i.e., $H^1(C, \mathcal{O}(p_1 + \ldots + p_n)) = 0$. Consider enhanced spaces

 $\widetilde{\mathcal{U}}^{ns,(\infty)} \stackrel{\mathfrak{G}}{\longrightarrow} \widetilde{\mathcal{U}}_{g,n}^{ns} \stackrel{(\mathbb{C}^*)^n}{\longrightarrow} \mathcal{U}_{g,n}^{ns}$

corresponding to choices of formal parameters or nonzero tangent vectors at each marked point. Here & is the group of formal changes

$$t_i \mapsto t_i + c_{2,i}t_i^2 + c_{3,i}t_i^3 + \dots$$

Note that we necessarily have $n \ge g$. **Example**. For g = 0 the restriction on marked points is that $\mathcal{O}(p_1 + \ldots + p_n)$ is ample. The moduli stack $\mathcal{U}_{0,n}^{ns}$ is related to Boggi-Kontsevich compactification of $\mathcal{M}_{0,n}$

Consider the moduli stack $\mathcal{U}_{g,n}^{ns}$ of (C, p_1, \ldots, p_n) , where *C* has arithmetic genus g, p_1, \ldots, p_n are smooth and distinct, such that $\mathcal{O}(p_1 + \ldots + p_n)$ is ample and nonspecial, i.e., $H^1(C, \mathcal{O}(p_1 + \ldots + p_n)) = 0$. Consider enhanced spaces

$$\widetilde{\mathcal{U}}^{ns,(\infty)} \stackrel{\mathfrak{G}}{\longrightarrow} \widetilde{\mathcal{U}}_{g,n}^{ns} \stackrel{(\mathbb{C}^*)^n}{\longrightarrow} \mathcal{U}_{g,n}^{ns}$$

corresponding to choices of formal parameters or nonzero tangent vectors at each marked point. Here & is the group of formal changes

$$t_i \mapsto t_i + c_{2,i}t_i^2 + c_{3,i}t_i^3 + \dots$$

Note that we necessarily have $n \ge g$.

Example. For g = 0 the restriction on marked points is that $\mathcal{O}(p_1 + \ldots + p_n)$ is ample. The moduli stack $\mathcal{U}_{0,n}^{ns}$ is related to Boggi-Kontsevich compactification of $\mathcal{M}_{0,n}$

There is a natural map from $\widetilde{\mathcal{U}}_{g,n}^{ns}$ to the Grassmannian G(n-g,n) defined as follows. The short exact sequence

$$0 \rightarrow \mathcal{O}_C \rightarrow \mathcal{O}_C(p_1 + \ldots + p_n) \rightarrow \bigoplus_{i=1}^n T_{p_i}C \rightarrow 0$$

gives rise to an exact sequence

$$\bigoplus_{i=1}^n T_{p_i}C \to H^1(\mathcal{O}_C) \to H^1(\mathcal{O}_C(p_1 + \ldots + p_n)) = 0,$$

The kernel of the first arrow is an (n-g)-dimensional subspace in \mathbb{C}^n .

For each subset of indices $S \subset [1, n]$ with |S| = g, the preimage of the corresponding standard cell in G(n - g, n) is the open subset $\mathcal{U}(S) \subset \widetilde{\mathcal{U}}_{g,n}^{ns}$ consisting of $(C, p_1 + \ldots + p_n)$ such that $H^1(C, \mathcal{O}(\sum_{i \in S} p_i)) = 0.$

There is a natural map from $\widetilde{\mathcal{U}}_{g,n}^{ns}$ to the Grassmannian G(n-g,n) defined as follows. The short exact sequence

$$0 \rightarrow \mathcal{O}_C \rightarrow \mathcal{O}_C(p_1 + \ldots + p_n) \rightarrow \bigoplus_{i=1}^n T_{p_i}C \rightarrow 0$$

gives rise to an exact sequence

$$\bigoplus_{i=1}^n T_{p_i}C \to H^1(\mathcal{O}_C) \to H^1(\mathcal{O}_C(p_1 + \ldots + p_n)) = 0,$$

The kernel of the first arrow is an (n-g)-dimensional subspace in \mathbb{C}^n .

For each subset of indices $S \subset [1, n]$ with |S| = g, the preimage of the corresponding standard cell in G(n - g, n) is the open subset $\mathcal{U}(S) \subset \widetilde{\mathcal{U}}_{g,n}^{ns}$ consisting of $(C, p_1 + \ldots + p_n)$ such that $H^1(C, \mathcal{O}(\sum_{i \in S} p_i)) = 0.$

Theorem. The Krichever map defines a locally closed embedding $\widetilde{\mathcal{U}}^{ns,(\infty)} \hookrightarrow SG(\mathcal{H})$.

Its image is the closed subset of the locus $SG^{ns}(\mathcal{H})$ consisting of W such that $\mathcal{H} = W + \mathcal{H}_{\geq -1}$. The image consists of W such that $W \cdot W \subset W$.

The action of \mathfrak{G} on $SG^{ns}(\mathcal{H})$ is free, and the quotient has an open covering by infinite-dimensional affine spaces.

The moduli space $\tilde{\mathcal{U}}_{g,n}^{ns}$ is a scheme of finite type, affine over the Grassmannian G(n-g, n).

There is a natural $(\mathbb{C}^*)^n$ -action on $\widetilde{\mathcal{U}}_{g,n}^{ns}$ (rescaling the tangent vectors at the marked points), compatible with the standard $(\mathbb{C}^*)^n$ -action on G(n-g, n).

The invariant subscheme of the diagonal $\mathbb{C}^* \subset (\mathbb{C}^*)^n$ in $\widetilde{\mathcal{U}}_{g,n}^{ns}$ is a section of a map to G(n-g, n). \mathbb{C}^* -action has positive weights. **Remark.** Taking GIT quotients of $\widetilde{\mathcal{U}}_{g,n}^{ns}$ one gets birational projective models of $M_{g,n}$.

Theorem. The Krichever map defines a locally closed embedding $\widetilde{\mathcal{U}}^{ns,(\infty)} \hookrightarrow SG(\mathcal{H})$.

Its image is the closed subset of the locus $SG^{ns}(\mathcal{H})$ consisting of W such that $\mathcal{H} = W + \mathcal{H}_{\geq -1}$. The image consists of W such that $W \cdot W \subset W$.

The action of \mathfrak{G} on $SG^{ns}(\mathcal{H})$ is free, and the quotient has an open covering by infinite-dimensional affine spaces.

The moduli space $\tilde{\mathcal{U}}_{g,n}^{ns}$ is a scheme of finite type, affine over the Grassmannian G(n-g, n).

There is a natural $(\mathbb{C}^*)^n$ -action on $\widetilde{\mathcal{U}}_{g,n}^{ns}$ (rescaling the tangent vectors at the marked points), compatible with the standard $(\mathbb{C}^*)^n$ -action on G(n - g, n).

The invariant subscheme of the diagonal $\mathbb{C}^* \subset (\mathbb{C}^*)^n$ in $\widetilde{\mathcal{U}}_{g,n}^{ns}$ is a section of a map to G(n-g, n). \mathbb{C}^* -action has positive weights. Remark. Taking GIT quotients of $\widetilde{\mathcal{U}}_{g,n}^{ns}$ one gets birational projective models of $M_{g,n}$.

Theorem. The Krichever map defines a locally closed embedding $\widetilde{\mathcal{U}}^{ns,(\infty)} \hookrightarrow SG(\mathcal{H})$.

Its image is the closed subset of the locus $SG^{ns}(\mathcal{H})$ consisting of W such that $\mathcal{H} = W + \mathcal{H}_{\geq -1}$. The image consists of W such that $W \cdot W \subset W$.

The action of \mathfrak{G} on $SG^{ns}(\mathcal{H})$ is free, and the quotient has an open covering by infinite-dimensional affine spaces.

The moduli space $\mathcal{U}_{g,n}^{ns}$ is a scheme of finite type, affine over the Grassmannian G(n-g, n).

There is a natural $(\mathbb{C}^*)^n$ -action on $\widetilde{\mathcal{U}}_{g,n}^{ns}$ (rescaling the tangent vectors at the marked points), compatible with the standard $(\mathbb{C}^*)^n$ -action on G(n - g, n).

The invariant subscheme of the diagonal $\mathbb{C}^* \subset (\mathbb{C}^*)^n$ in $\widetilde{\mathcal{U}}_{g,n}^{ns}$ is a section of a map to G(n-g, n). \mathbb{C}^* -action has positive weights. **Remark**. Taking GIT quotients of $\widetilde{\mathcal{U}}_{g,n}^{ns}$ one gets birational projective models of $M_{g,n}$.

Example. g = n = 1. The algebra $\mathcal{O}(C \setminus p)$ is generated by x and y such that

$$x = \frac{1}{t^2} + \dots, \ \ y = \frac{1}{t^3} + \dots$$

Using the ambiguity $x \mapsto x + a$, $y \mapsto y + bx + c$, we can choose x and y uniquely so that

$$y^2 = x^3 + px + q.$$

Thus, $\widetilde{\mathcal{U}}_{1,1}^{ns} = \mathbb{A}^2$.

 \mathbb{C}^* acts with the weights (2,3). The unique \mathbb{C}^* -invariant point, p = q = 0, corresponds to the cuspidal cubic.

Example. g = n = 1. The algebra $\mathcal{O}(C \setminus p)$ is generated by x and y such that

$$x = \frac{1}{t^2} + \dots, \ \ y = \frac{1}{t^3} + \dots$$

Using the ambiguity $x \mapsto x + a$, $y \mapsto y + bx + c$, we can choose x and y uniquely so that

$$y^2 = x^3 + px + q.$$

Thus, $\widetilde{\mathcal{U}}_{1,1}^{ns} = \mathbb{A}^2$. \mathbb{C}^* acts with the weights (2,3). The unique \mathbb{C}^* -invariant point, p = q = 0, corresponds to the cuspidal cubic.

Example. $g = 0, n \ge 3$. The algebra $\mathcal{O}(C \setminus \{p_1, \dots, p_n\})$ is generated by x_1, \dots, x_n , where $x_i \in H^0(C, \mathcal{O}(p_i))$, and $x_i = \frac{1}{t_i} + \dots$ The defining relations are

$$x_i x_j = \alpha_{ij} x_j + \alpha_{ji} x_i + c_{ij}$$
, for $i \neq j$, with

$$(\star) \mathbf{C}_{ij} = \alpha_{ik}\alpha_{jk} - \alpha_{ij}\alpha_{jk} - \alpha_{ji}\alpha_{ik}.$$

Normalization: $\alpha_{i,i+1} = 0$. Then x_i are unique.

The relation (*) gives the defining equations of $\mathcal{U}_{0,n}^{ns}$, same as the miniversal deformation of the coordinate cross in \mathbb{C}^n .

Remark. The only singularities that a reduced curve of arithmetic genus 0 can have are rational *m*-fold points.

Example. $g = 0, n \ge 3$. The algebra $\mathcal{O}(C \setminus \{p_1, \dots, p_n\})$ is generated by x_1, \dots, x_n , where $x_i \in H^0(C, \mathcal{O}(p_i))$, and $x_i = \frac{1}{t_i} + \dots$ The defining relations are

$$x_i x_j = \alpha_{ij} x_j + \alpha_{ji} x_i + c_{ij}$$
, for $i \neq j$, with

(*)
$$\mathbf{c}_{ij} = \alpha_{ik}\alpha_{jk} - \alpha_{ij}\alpha_{jk} - \alpha_{ji}\alpha_{ik}.$$

Normalization: $\alpha_{i,i+1} = 0$. Then x_i are unique.

The relation (*) gives the defining equations of $\widetilde{\mathcal{U}}_{0,n}^{ns}$, same as the miniversal deformation of the coordinate cross in \mathbb{C}^n .

Remark. The only singularities that a reduced curve of arithmetic genus 0 can have are rational *m*-fold points.

Example. $g = 0, n \ge 3$. The algebra $\mathcal{O}(C \setminus \{p_1, \dots, p_n\})$ is generated by x_1, \dots, x_n , where $x_i \in H^0(C, \mathcal{O}(p_i))$, and $x_i = \frac{1}{t_i} + \dots$ The defining relations are

$$x_i x_j = \alpha_{ij} x_j + \alpha_{ji} x_i + c_{ij}$$
, for $i \neq j$, with

(*)
$$\mathbf{c}_{ij} = \alpha_{ik}\alpha_{jk} - \alpha_{ij}\alpha_{jk} - \alpha_{ji}\alpha_{ik}.$$

Normalization: $\alpha_{i,i+1} = 0$. Then x_i are unique.

The relation (*) gives the defining equations of $\widetilde{\mathcal{U}}_{0,n}^{ns}$, same as the miniversal deformation of the coordinate cross in \mathbb{C}^n .

Remark. The only singularities that a reduced curve of arithmetic genus 0 can have are rational *m*-fold points.

 $(\mathbb{C}^*)^n$ -action: $(\lambda^{-1})^* \alpha_{ij} = \lambda_i \alpha_{ij}$. For each character $\chi(\lambda) = \lambda_1^{a_1} \dots \lambda_n^{a_n}$ of $(\mathbb{C}^*)^n$ can consider the GIT-quotient $\widetilde{\mathcal{U}}_{0,n}^{ns} /\!\!/_{\chi} (\mathbb{C}^*)^n$. If $a_1 > 0, \dots, a_n > 0$ then stable (=semistable) points correspond to (C, p_1, \dots, p_n) such that each irreducible component has ≥ 3 special points. This is exactly Boggi-Kontsevich moduli space.

We get a realization of this space by explicit equations in $(\mathbb{P}^{n-3})^n$. Namely, in equation (*) we should view α_{ij} as homogeneous coordinates on the *i*th copy of \mathbb{P}^{n-3} .

Remark. For n > 5 it is not known whether the scheme $\mathcal{U}_{0,n}^{ns}$ (or its GIT-quotient) is normal or even reduced.

 $(\mathbb{C}^*)^n$ -action: $(\lambda^{-1})^* \alpha_{ij} = \lambda_i \alpha_{ij}$. For each character $\chi(\lambda) = \lambda_1^{a_1} \dots \lambda_n^{a_n}$ of $(\mathbb{C}^*)^n$ can consider the GIT-quotient $\widetilde{\mathcal{U}}_{0,n}^{ns} /\!\!/_{\chi} (\mathbb{C}^*)^n$. If $a_1 > 0, \dots, a_n > 0$ then stable (=semistable) points correspond to (C, p_1, \dots, p_n) such that each irreducible component has ≥ 3 special points. This is exactly Boggi-Kontsevich moduli space.

We get a realization of this space by explicit equations in $(\mathbb{P}^{n-3})^n$. Namely, in equation (*) we should view α_{ij} as homogeneous coordinates on the *i*th copy of \mathbb{P}^{n-3} .

Remark. For n > 5 it is not known whether the scheme $\tilde{\mathcal{U}}_{0,n}^{ns}$ (or its GIT-quotient) is normal or even reduced.

 $(\mathbb{C}^*)^n$ -action: $(\lambda^{-1})^* \alpha_{ij} = \lambda_i \alpha_{ij}$. For each character $\chi(\lambda) = \lambda_1^{a_1} \dots \lambda_n^{a_n}$ of $(\mathbb{C}^*)^n$ can consider the GIT-quotient $\widetilde{\mathcal{U}}_{0,n}^{ns} /\!\!/_{\chi} (\mathbb{C}^*)^n$. If $a_1 > 0, \dots, a_n > 0$ then stable (=semistable) points correspond to (C, p_1, \dots, p_n) such that each irreducible component has ≥ 3 special points. This is exactly Boggi-Kontsevich moduli space.

We get a realization of this space by explicit equations in $(\mathbb{P}^{n-3})^n$. Namely, in equation (*) we should view α_{ij} as homogeneous coordinates on the *i*th copy of \mathbb{P}^{n-3} .

Remark. For n > 5 it is not known whether the scheme $\widetilde{\mathcal{U}}_{0,n}^{ns}$ (or its GIT-quotient) is normal or even reduced.

Case g = 1: fundamental decomposition

Proposition. A curve $(C, p_1, ..., p_n)$ is in $\mathcal{U}_{1,n}^{ns}$ if and only if it has a fundamental decomposition

$$C = E \cup R_1 \cup \ldots \cup R_r,$$

where R_i are connected tails of arithmetic genus 0 attached to *E* transversally at distinct points, and *E* is of one of the following types:

- smooth elliptic curve;
- cycle of projective lines (standard *m*-gon);
- elliptic *m*-fold curve.

Furthermore, there should be at least one marked point on every irreducible component.

Elliptic *m*-fold curves.

- m = 1: cuspidal cubic;
- \blacksquare *m* = 2: union of two projective lines glued in a tacnode;
- **m** \geq 3: union of *m* generic lines through a point in \mathbb{P}^{m-1}

Case g = 1: fundamental decomposition

Proposition. A curve $(C, p_1, ..., p_n)$ is in $\mathcal{U}_{1,n}^{ns}$ if and only if it has a fundamental decomposition

$$C = E \cup R_1 \cup \ldots \cup R_r,$$

where R_i are connected tails of arithmetic genus 0 attached to *E* transversally at distinct points, and *E* is of one of the following types:

- smooth elliptic curve;
- cycle of projective lines (standard *m*-gon);
- elliptic *m*-fold curve.

Furthermore, there should be at least one marked point on every irreducible component.

Elliptic *m*-fold curves.

- m = 1: cuspidal cubic;
- **•** m = 2: union of two projective lines glued in a tacnode;
- **•** $m \ge 3$: union of *m* generic lines through a point in \mathbb{P}^{m-1} .

Fix a rational character $\chi = (a_1, \ldots, a_n)$ of $(\mathbb{C}^*)^n$. Let (C, p_1, \ldots, p_n) be in our moduli space, with fundamental decomposition $C = E \cup R_1 \cup \ldots \cup R_r$. For a marked point p_i lying on an irreducible component $C' \simeq \mathbb{P}^1$, we denote by $N(p_i)$ the number of special points on C'. Define $I_0 \subset I \subset [1, n]$ and $J \subset [1, n]$ by

$$J = \{ j \mid p_j \notin E, N(p_j) \geq 3 \};$$

$$I = \{i \mid p_i \in E\};$$

In
$$I_0 = \emptyset$$
 if *E* is at most nodal; otherwise,

 $I_0 = \{i \in I \mid N(p_i) \leq 2\}.$

Theorem. (C, p_1, \ldots, p_n) is $\pi^* \mathcal{O}(1) \otimes \chi$ -semistable if and only if

•
$$a_i \ge 0$$
 for all i ; $a_i = 0$ for $i \notin I \cup J$;

 $\blacksquare \sum_{i \in I_0} a_i \le 1;$

$$\square \sum_{i \in I} a_i \ge 1.$$

All these GIT quotients are projective.

Fix a rational character $\chi = (a_1, \ldots, a_n)$ of $(\mathbb{C}^*)^n$. Let (C, p_1, \ldots, p_n) be in our moduli space, with fundamental decomposition $C = E \cup R_1 \cup \ldots \cup R_r$. For a marked point p_i lying on an irreducible component $C' \simeq \mathbb{P}^1$, we denote by $N(p_i)$ the number of special points on C'. Define $I_0 \subset I \subset [1, n]$ and $J \subset [1, n]$ by

$$J = \{ j \mid p_j \notin E, N(p_j) \geq 3 \};$$

$$I = \{i \mid p_i \in E\};$$

I
$$I_0 = \emptyset$$
 if *E* is at most nodal; otherwise,

$$I_0 = \{i \in I \mid N(p_i) \leq 2\}.$$

Theorem. (C, p_1, \ldots, p_n) is $\pi^* \mathcal{O}(1) \otimes \chi$ -semistable if and only if

•
$$a_i \ge 0$$
 for all i ; $a_i = 0$ for $i \notin I \cup J$;

$$\square \sum_{i \in I_0} a_i \leq 1;$$

$$\square$$
 $\sum_{i\in I} a_i \geq 1$

All these GIT quotients are projective.

Example 1. All $a_i > 1$. Then stability (=semistability) means that there are ≥ 3 special points on the normalization of every rational component of *C*.

Equivalently, there exists a birational map $f : \widehat{C} \to C$, where $(\widetilde{C}, \widetilde{p}_1, \ldots, \widetilde{p}_n)$ is Deligne-Mumford stable of genus 1, f contracts the unmarked components in \widetilde{C} .

Example 2. $a_i = a, a \in (\frac{1}{n}, \frac{1}{n-2})$. Then stability means that C = E (equivalently, *C* is Gorenstein with trivial ω_C , equivalently, $H^1(C, \mathcal{O}(p_i)) = 0$ for each *i*), and (C, p_1, \dots, p_n) has no infinitesimal symmetries.

The moduli spaces in both Examples were first constructed by David Smyth. The moduli space in Example 2 was studied in [P-Lekili]. We showed that it is a normal Gorenstein projective scheme, given by explicit equations.

Example 1. All $a_i > 1$. Then stability (=semistability) means that there are ≥ 3 special points on the normalization of every rational component of *C*.

Equivalently, there exists a birational map $f: \widetilde{C} \to C$, where $(\widetilde{C}, \widetilde{p}_1, \ldots, \widetilde{p}_n)$ is Deligne-Mumford stable of genus 1, f contracts the unmarked components in \widetilde{C} . Example 2. $a_i = a, a \in (\frac{1}{n}, \frac{1}{n-2})$. Then stability means that C = E (equivalently, C is Gorenstein with trivial ω_C , equivalently, $H^1(C, \mathcal{O}(p_i)) = 0$ for each i), and (C, p_1, \ldots, p_n)

has no infinitesimal symmetries.

The moduli spaces in both Examples were first constructed by David Smyth. The moduli space in Example 2 was studied in [P-Lekili]. We showed that it is a normal Gorenstein projective scheme, given by explicit equations.

Example 1. All $a_i > 1$. Then stability (=semistability) means that there are ≥ 3 special points on the normalization of every rational component of *C*.

Equivalently, there exists a birational map $f : \widetilde{C} \to C$, where $(\widetilde{C}, \widetilde{p}_1, \ldots, \widetilde{p}_n)$ is Deligne-Mumford stable of genus 1, f contracts the unmarked components in \widetilde{C} . Example 2. $a_i = a, a \in (\frac{1}{n}, \frac{1}{n-2})$. Then stability means that C = E (equivalently, C is Gorenstein with trivial ω_C , equivalently, $H^1(C, \mathcal{O}(p_i)) = 0$ for each i), and (C, p_1, \ldots, p_n) has no infinitesimal symmetries.

The moduli spaces in both Examples were first constructed by David Smyth. The moduli space in Example 2 was studied in [P-Lekili]. We showed that it is a normal Gorenstein projective scheme, given by explicit equations.

Case g = 1: Strongly non-special curves

Consider $(C, p_1, ..., p_n)$ with $H^1(C, \mathcal{O}(p_i)) = 0$ for each *i*, as in Example 2. Fix a nonzero global section $\omega \in H^0(C, \omega_C)$. Assume $n \ge 3$. For $i \ne j$, there is $h_{ij} \in H^0(C, \mathcal{O}(p_i + p_j))$, unique up to adding a constant, such that $\operatorname{Res}_{p_i} h_{ij}\omega) = 1$, $\operatorname{Res}_{p_j} h_{ij}\omega) = -1$. Normalize h_{12} and h_{13} by $h_{12}(p_3) = 0$, $h_{13}(p_2) = 0$. Then the

algebra $\mathcal{O}(C \setminus \{p_1, \ldots, p_n\})$ is generated by

 $x_2 = h_{12}, \ldots, x_n = h_{1n}$, with defining relations

 $x_i x_j = x_2 x_3 + c_{ij} x_j + c_{ji} x_i + d_{ij},$

$$x_2x_3^2 = x_2^2x_3 + ax_2x_3 + bx_2 + cx_3 + d$$

where $c_{ij} = h_{1i}(x_j)$.

The (normalized) coefficients become (weighted) projective coordinates on the moduli space. For $n \ge 5$ all coordinates are expressed in terms of c_{ij} and a (which have weight 1). One can write explicitly defining equations between them.

Case g = 1: Strongly non-special curves

Consider (C, p_1, \ldots, p_n) with $H^1(C, \mathcal{O}(p_i)) = 0$ for each *i*, as in Example 2. Fix a nonzero global section $\omega \in H^0(C, \omega_C)$. Assume $n \ge 3$. For $i \ne j$, there is $h_{ii} \in H^0(C, \mathcal{O}(p_i + p_i))$, unique up to adding a constant, such that $\operatorname{Res}_{p_i} h_{ii}\omega) = 1$, $\operatorname{Res}_{p_i} h_{ii}\omega) = -1.$ Normalize h_{12} and h_{13} by $h_{12}(p_3) = 0$, $h_{13}(p_2) = 0$. Then the algebra $\mathcal{O}(C \setminus \{p_1, \ldots, p_n\})$ is generated by $x_2 = h_{12}, \ldots, x_n = h_{1n}$, with defining relations $x_i x_i = x_2 x_3 + c_{ii} x_i + c_{ii} x_i + d_{ii}$ $x_2x_3^2 = x_2^2x_3 + ax_2x_3 + bx_2 + cx_3 + d$ where $c_{ii} = h_{1i}(x_i)$.

The (normalized) coefficients become (weighted) projective coordinates on the moduli space. For $n \ge 5$ all coordinates are expressed in terms of c_{ij} and a (which have weight 1). One can write explicitly defining equations between them.

Case g = 1: Strongly non-special curves

Consider (C, p_1, \ldots, p_n) with $H^1(C, \mathcal{O}(p_i)) = 0$ for each *i*, as in Example 2. Fix a nonzero global section $\omega \in H^0(C, \omega_C)$. Assume $n \geq 3$. For $i \neq j$, there is $h_{ii} \in H^0(C, \mathcal{O}(p_i + p_i))$, unique up to adding a constant, such that $\operatorname{Res}_{p_i} h_{ii}\omega) = 1$, $\operatorname{Res}_{p_i} h_{ij}\omega) = -1.$ Normalize h_{12} and h_{13} by $h_{12}(p_3) = 0$, $h_{13}(p_2) = 0$. Then the algebra $\mathcal{O}(C \setminus \{p_1, \ldots, p_n\})$ is generated by $x_2 = h_{12}, \ldots, x_n = h_{1n}$, with defining relations $x_i x_i = x_2 x_3 + c_{ii} x_i + c_{ii} x_i + d_{ii}$ $x_2x_2^2 = x_2^2x_3 + ax_2x_3 + bx_2 + cx_3 + d$ where $c_{ii} = h_{1i}(x_i)$.

The (normalized) coefficients become (weighted) projective coordinates on the moduli space. For $n \ge 5$ all coordinates are expressed in terms of c_{ij} and a (which have weight 1). One can write explicitly defining equations between them.

Case n = g

Set $D = p_1 + \ldots + p_g$. Then for each *i* there exist $x_i \in H^0(C, \mathcal{O}(D + p_i)), y_i \in H^0(C, \mathcal{O}(D + 2p_i))$ such that

$$x_i = \frac{1}{t_i^2} + \dots, \ y_i = \frac{1}{t_i^3} + \dots$$

at p_i . The algebra $\mathcal{O}(C \setminus D)$ is generated by $(x_1, \ldots, x_g, y_1, \ldots, y_g)$.

Using the ambiguity $x_i \mapsto x + a_i$, $y_i \mapsto y_i + b_i x_i + c_i$, we can choose x_i and y_i uniquely so that

$$y_i^2 - x_i^3 \in H^0(C, \mathcal{O}(3D)), \ x_i(y_i^2 - x_i^3) \in H^0(C, \mathcal{O}(4D)).$$

Note that $(x_i^n, y_i x_i^n)$ is a basis of $\mathcal{O}(C \setminus D)$.

Case n = g

Set $D = p_1 + \ldots + p_g$. Then for each *i* there exist $x_i \in H^0(C, \mathcal{O}(D + p_i)), y_i \in H^0(C, \mathcal{O}(D + 2p_i))$ such that

$$x_i = \frac{1}{t_i^2} + \dots, \ y_i = \frac{1}{t_i^3} + \dots$$

at p_i . The algebra $\mathcal{O}(C \setminus D)$ is generated by $(x_1, \ldots, x_g, y_1, \ldots, y_g)$.

Using the ambiguity $x_i \mapsto x + a_i$, $y_i \mapsto y_i + b_i x_i + c_i$, we can choose x_i and y_i uniquely so that

$$y_i^2 - x_i^3 \in H^0(\mathcal{C}, \mathcal{O}(3D)), \ x_i(y_i^2 - x_i^3) \in H^0(\mathcal{C}, \mathcal{O}(4D)).$$

Note that $(x_i^n, y_i x_i^n)$ is a basis of $\mathcal{O}(C \setminus D)$.

Case n = g

Set $D = p_1 + \ldots + p_g$. Then for each *i* there exist $x_i \in H^0(C, \mathcal{O}(D + p_i)), y_i \in H^0(C, \mathcal{O}(D + 2p_i))$ such that

$$x_i = \frac{1}{t_i^2} + \dots, \ y_i = \frac{1}{t_i^3} + \dots$$

at p_i . The algebra $\mathcal{O}(C \setminus D)$ is generated by $(x_1, \ldots, x_g, y_1, \ldots, y_g)$.

Using the ambiguity $x_i \mapsto x + a_i$, $y_i \mapsto y_i + b_i x_i + c_i$, we can choose x_i and y_i uniquely so that

$$y_i^2 - x_i^3 \in H^0(\mathcal{C}, \mathcal{O}(3D)), \ x_i(y_i^2 - x_i^3) \in H^0(\mathcal{C}, \mathcal{O}(4D)).$$

Note that $(x_i^n, y_i x_i^n)$ is a basis of $\mathcal{O}(C \setminus D)$.

Case $n = g \ge 2$: equations of the universal curve

$$\begin{aligned} x_i x_j &= \alpha_{ji} y_i + \alpha_{ij} y_j + \gamma_{ji} x_i + \gamma_{ij} x_j + \sum_{k \neq i,j} c_{ij}^k x_k + a_{ij}, \\ x_i y_j &= \alpha_{ij} x_j^2 + \beta_{ji} y_i + \gamma_{ij} y_j + r_{ji} x_i + \delta_{ij} x_j + \sum_{k \neq i,j} e_{ji}^k x_k + b_{ij}, \\ y_i y_j &= \beta_{ji} x_i^2 + \beta_{ij} x_j^2 + \varepsilon_{ji} y_i + \varepsilon_{ij} y_j + \psi_{ji} x_i + \psi_{ij} x_j + \sum_{k \neq i,j} I_{ij}^k x_k + u_{ij}, \\ y_i^2 &= x_i^3 + \mathbf{p}_i x_i + \sum_{j \neq i} g_j^j y_j + \sum_{j \neq i} k_i^j x_j + q_i, \end{aligned}$$

where *i* and *j* are distinct.

Using Gröbner basis technique find:

$$\begin{split} \boldsymbol{c}_{ij}^{k} &= \alpha_{ik} \alpha_{jk}, \\ \boldsymbol{g}_{i}^{j} &= -\alpha_{ij}^{3}, \\ \boldsymbol{r}_{ji} &= \varepsilon_{ji} - \alpha_{ij} \alpha_{ji}^{2}, \end{split}$$

etc., so that all the coefficients are expressed in terms of $(\alpha_{ij}, \beta_{ij}, \gamma_{ij}, \varepsilon_{ij}, p_i)$. These coordinates satisfy further equations, and $\widetilde{\mathcal{U}}_{g,g}^{ns}$ is the corresponding affine scheme.

Case $n = g \ge 2$: equations of the universal curve

$$\begin{aligned} x_i x_j &= \alpha_{ji} y_i + \alpha_{ij} y_j + \gamma_{ji} x_i + \gamma_{ij} x_j + \sum_{k \neq i,j} c_{ij}^k x_k + a_{ij}, \\ x_i y_j &= \alpha_{ij} x_j^2 + \beta_{ji} y_i + \gamma_{ij} y_j + r_{ji} x_i + \delta_{ij} x_j + \sum_{k \neq i,j} e_{ji}^k x_k + b_{ij}, \\ y_i y_j &= \beta_{ji} x_i^2 + \beta_{ij} x_j^2 + \varepsilon_{ji} y_i + \varepsilon_{ij} y_j + \psi_{ji} x_i + \psi_{ij} x_j + \sum_{k \neq i,j} l_{ij}^k x_k + u_{ij}, \\ y_i^2 &= x_i^3 + \mathbf{p}_i x_i + \sum_{j \neq i} g_j^j y_j + \sum_{j \neq i} k_i^j x_j + q_i, \end{aligned}$$

where *i* and *j* are distinct.

Using Gröbner basis technique find:

$$egin{aligned} m{c}_{ij}^k &= lpha_{ik} lpha_{jk}, \ m{g}_i^j &= -lpha_{ij}^3, \ m{r}_{ji} &= arepsilon_{ji} - lpha_{ij} lpha_{ji}^2, \end{aligned}$$

etc., so that all the coefficients are expressed in terms of $(\alpha_{ij}, \beta_{ij}, \gamma_{ij}, \varepsilon_{ij}, p_i)$. These coordinates satisfy further equations, and $\widetilde{\mathcal{U}}_{g,g}^{ns}$ is the corresponding affine scheme.

GIT-stability condition depends on a character

 $\chi(\lambda) = (a_1, \ldots, a_n)$ of $(\mathbb{C}^*)^n$.

All GIT-quotients are projective, empty unless (a_1, \ldots, a_n) belongs to the cone generated by $(2e_i - e_j)$.

Wall structure in \mathbb{R}^n : the codim-1 walls are cones spanned by subsets of $(2e_i - e_j, 3e_i - e_j, e_i)$.

Main chamber C_0 : $a_1 > 0, ..., a_n > 0$. For $\chi \in C_0$ every $(C, p_1, ..., p_g)$ with smooth *C* is χ -stable.

GIT-stability condition depends on a character $\chi(\lambda) = (a_1, \ldots, a_n)$ of $(\mathbb{C}^*)^n$. All GIT-quotients are projective, empty unless (a_1, \ldots, a_n) belongs to the cone generated by $(2e_i - e_j)$. Wall structure in \mathbb{R}^n : the codim-1 walls are cones spanned by subsets of $(2e_i - e_j, 3e_i - e_j, e_i)$.

Main chamber C_0 : $a_1 > 0, ..., a_n > 0$. For $\chi \in C_0$ every $(C, p_1, ..., p_g)$ with smooth C is χ -stable.

GIT-stability condition depends on a character

 $\chi(\lambda) = (a_1, \ldots, a_n)$ of $(\mathbb{C}^*)^n$.

All GIT-quotients are projective, empty unless (a_1, \ldots, a_n) belongs to the cone generated by $(2e_i - e_j)$. Wall structure in \mathbb{R}^n : the codim-1 walls are cones spanned by subsets of $(2e_i - e_j, 3e_i - e_j, e_i)$.

Main chamber C_0 : $a_1 > 0, ..., a_n > 0$. For $\chi \in C_0$ every $(C, p_1, ..., p_g)$ with smooth *C* is χ -stable.

GIT-stability condition depends on a character

 $\chi(\lambda) = (a_1, \ldots, a_n)$ of $(\mathbb{C}^*)^n$.

All GIT-quotients are projective, empty unless (a_1, \ldots, a_n) belongs to the cone generated by $(2e_i - e_j)$. Wall structure in \mathbb{R}^n : the codim-1 walls are cones spanned by subsets of $(2e_i - e_j, 3e_i - e_j, e_i)$.

Main chamber C_0 : $a_1 > 0, ..., a_n > 0$. For $\chi \in C_0$ every $(C, p_1, ..., p_g)$ with smooth *C* is χ -stable.

Moduli of A_{∞} -structures

Recall that an A_{∞} -algebra is a graded vector space A with operations $m_n : A^{\otimes n} \to A$ of degree 2 - n, for $n \ge 1$, satisfying A_{∞} -identities $\sum_{i+j=n} [m_i, m_j] = 0$ (where $[\cdot, \cdot]$ is the Gerstenhaber bracket).

For a given finite-dimensional associative algebra A can consider all A_{∞} -structures (m_{\bullet}) on A with $m_1 = 0$ and m_2 the given product on A. These are parametrized by an infinite-dimensional affine scheme $\mathcal{A}_{\infty}(A)$. There is a natural action of an infinite-dimensional unipotent group \mathfrak{G} of gauge equivalences on $\mathcal{A}_{\infty}(A)$. We consider the moduli space $\mathcal{M}_{\infty}(A) = \mathcal{A}_{\infty}(A)/\mathfrak{G}$.

Theorem. Assume $HH^1(A)_j = 0$ for j < 0. Then the action of \mathfrak{G} on $\mathcal{A}_{\infty}(A)$ admits a section, so that $\mathcal{M}_{\infty}(A)$ is an affine scheme. If in addition $HH^2(A)_{<0}$ is finite-dimensional then $\mathcal{M}_{\infty}(A)$ is of finite type. (Here $HH^{\bullet}(A)$ is the Hochschild cohomology.)

Moduli of A_{∞} -structures

Recall that an A_{∞} -algebra is a graded vector space A with operations $m_n : A^{\otimes n} \to A$ of degree 2 - n, for $n \ge 1$, satisfying A_{∞} -identities $\sum_{i+j=n} [m_i, m_j] = 0$ (where $[\cdot, \cdot]$ is the Gerstenhaber bracket).

For a given finite-dimensional associative algebra A can consider all A_{∞} -structures (m_{\bullet}) on A with $m_1 = 0$ and m_2 the given product on A. These are parametrized by an infinite-dimensional affine scheme $\mathcal{A}_{\infty}(A)$. There is a natural action of an infinite-dimensional unipotent group \mathfrak{G} of gauge equivalences on $\mathcal{A}_{\infty}(A)$. We consider the moduli space $\mathcal{M}_{\infty}(A) = \mathcal{A}_{\infty}(A)/\mathfrak{G}$.

Theorem. Assume $HH^1(A)_j = 0$ for j < 0. Then the action of \mathfrak{G} on $\mathcal{A}_{\infty}(A)$ admits a section, so that $\mathcal{M}_{\infty}(A)$ is an affine scheme. If in addition $HH^2(A)_{<0}$ is finite-dimensional then $\mathcal{M}_{\infty}(A)$ is of finite type. (Here $HH^{\bullet}(A)$ is the Hochschild cohomology.)

Moduli of A_{∞} -structures

Recall that an A_{∞} -algebra is a graded vector space A with operations $m_n : A^{\otimes n} \to A$ of degree 2 - n, for $n \ge 1$, satisfying A_{∞} -identities $\sum_{i+j=n} [m_i, m_j] = 0$ (where $[\cdot, \cdot]$ is the Gerstenhaber bracket).

For a given finite-dimensional associative algebra A can consider all A_{∞} -structures (m_{\bullet}) on A with $m_1 = 0$ and m_2 the given product on A. These are parametrized by an infinite-dimensional affine scheme $\mathcal{A}_{\infty}(A)$. There is a natural action of an infinite-dimensional unipotent group \mathfrak{G} of gauge equivalences on $\mathcal{A}_{\infty}(A)$. We consider the moduli space $\mathcal{M}_{\infty}(A) = \mathcal{A}_{\infty}(A)/\mathfrak{G}$.

Theorem. Assume $HH^1(A)_j = 0$ for j < 0. Then the action of \mathfrak{G} on $\mathcal{A}_{\infty}(A)$ admits a section, so that $\mathcal{M}_{\infty}(A)$ is an affine scheme. If in addition $HH^2(A)_{<0}$ is finite-dimensional then $\mathcal{M}_{\infty}(A)$ is of finite type. (Here $HH^{\bullet}(A)$ is the Hochschild cohomology.)

Given a curve $(C, p_1, ..., p_g)$ such that $H^1(\mathcal{O}(p_1 + ... + p_g)) = 0$ consider the algebra $E = \text{Ext}^*(G, G)$, where

$$G = \mathcal{O}_C \oplus \mathcal{O}_{p_1} \oplus \ldots \oplus \mathcal{O}_{p_g}.$$

Generators: $A_i \in \text{Hom}(\mathcal{O}_C, \mathcal{O}_{p_i}), B_i \in \text{Ext}^1(\mathcal{O}_{p_i}, \mathcal{O}_C)$. Note that the classes B_1A_1, \ldots, B_gA_g form a basis of $\text{Ext}^1(\mathcal{O}_C, \mathcal{O}_C) = H^1(C, \mathcal{O})$.

A choice of nonzero tangent vectors at p_1, \ldots, p_n gives an isomorphism of E with the fixed algebra E_g . By homological perturbation, for each curve (C, p_1, \ldots, p_n) there is a canonical gauge equivalence class of A_∞ -structures on E_g . Theorem. This defines an isomorphism $\widetilde{\mathcal{U}}_{g,g}^{ns} \simeq \mathcal{M}_\infty(E_g)$. Remark. There is a similar interpretation of $\widetilde{\mathcal{U}}_{g,n}^{ns}$ for n > g as moduli of A_∞ -structures. In this case m_2 is also allowed to vary

Given a curve $(C, p_1, ..., p_g)$ such that $H^1(\mathcal{O}(p_1 + ... + p_g)) = 0$ consider the algebra $E = \text{Ext}^*(G, G)$, where

$$G = \mathcal{O}_C \oplus \mathcal{O}_{p_1} \oplus \ldots \oplus \mathcal{O}_{p_g}.$$

Generators: $A_i \in \text{Hom}(\mathcal{O}_C, \mathcal{O}_{p_i}), B_i \in \text{Ext}^1(\mathcal{O}_{p_i}, \mathcal{O}_C)$. Note that the classes B_1A_1, \ldots, B_gA_g form a basis of $\text{Ext}^1(\mathcal{O}_C, \mathcal{O}_C) = H^1(C, \mathcal{O})$.

A choice of nonzero tangent vectors at p_1, \ldots, p_n gives an isomorphism of E with the fixed algebra E_g . By homological perturbation, for each curve (C, p_1, \ldots, p_n) there is a canonical gauge equivalence class of A_∞ -structures on E_g .

Theorem. This defines an isomorphism $\widetilde{\mathcal{U}}_{g,g}^{ns} \simeq \mathcal{M}_{\infty}(E_g)$. Remark. There is a similar interpretation of $\widetilde{\mathcal{U}}_{g,n}^{ns}$ for n > g as moduli of A_{∞} -structures. In this case m_2 is also allowed to vary.

Given a curve $(C, p_1, ..., p_g)$ such that $H^1(\mathcal{O}(p_1 + ... + p_g)) = 0$ consider the algebra $E = \text{Ext}^*(G, G)$, where

$$G = \mathcal{O}_C \oplus \mathcal{O}_{p_1} \oplus \ldots \oplus \mathcal{O}_{p_g}.$$

Generators: $A_i \in \text{Hom}(\mathcal{O}_C, \mathcal{O}_{p_i}), B_i \in \text{Ext}^1(\mathcal{O}_{p_i}, \mathcal{O}_C)$. Note that the classes B_1A_1, \ldots, B_gA_g form a basis of $\text{Ext}^1(\mathcal{O}_C, \mathcal{O}_C) = H^1(C, \mathcal{O})$.

A choice of nonzero tangent vectors at p_1, \ldots, p_n gives an isomorphism of E with the fixed algebra E_g . By homological perturbation, for each curve (C, p_1, \ldots, p_n) there is a canonical gauge equivalence class of A_∞ -structures on E_g .

Theorem. This defines an isomorphism $\widetilde{\mathcal{U}}_{g,g}^{ns} \simeq \mathcal{M}_{\infty}(E_g)$.

Remark. There is a similar interpretation of $\mathcal{U}_{g,n}^{ns}$ for n > g as moduli of A_{∞} -structures. In this case m_2 is also allowed to vary.

Given a curve $(C, p_1, ..., p_g)$ such that $H^1(\mathcal{O}(p_1 + ... + p_g)) = 0$ consider the algebra $E = \text{Ext}^*(G, G)$, where

$$G = \mathcal{O}_C \oplus \mathcal{O}_{p_1} \oplus \ldots \oplus \mathcal{O}_{p_g}.$$

Generators: $A_i \in \text{Hom}(\mathcal{O}_C, \mathcal{O}_{p_i}), B_i \in \text{Ext}^1(\mathcal{O}_{p_i}, \mathcal{O}_C)$. Note that the classes B_1A_1, \ldots, B_gA_g form a basis of $\text{Ext}^1(\mathcal{O}_C, \mathcal{O}_C) = H^1(C, \mathcal{O})$.

A choice of nonzero tangent vectors at p_1, \ldots, p_n gives an isomorphism of E with the fixed algebra E_g . By homological perturbation, for each curve (C, p_1, \ldots, p_n) there is a canonical gauge equivalence class of A_∞ -structures on E_g .

Theorem. This defines an isomorphism $\widetilde{\mathcal{U}}_{g,g}^{ns} \simeq \mathcal{M}_{\infty}(E_g)$.

Remark. There is a similar interpretation of $\mathcal{U}_{g,n}^{ns}$ for n > g as moduli of A_{∞} -structures. In this case m_2 is also allowed to vary.

References

arXiv:1312.4636 (case *n* = *g*)

[P-Lekili] arXiv:1408.0611 (case g = 1, strongly non-special curves)

arXiv:1511.03797 (general case)

arXiv:1603.01238 (case g = 1, GIT stabilities)