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Krichever map

Let C be a smooth projective curve, p a point, t a formal
parameter at p. Then Laurent series expansion in t defines an
embedding

H0(C \ {p},O) ↪→ C((t)).
Let W be the image of this embedding. Then we have
identifications

W ∩ C[[t ]] = H0(C,O) = C, C((t))/(W + C[[t ]]) = H1(C,O).
Thus, we get a point of the Sato Grassmannian SG
parametrizing subspaces of C((t)) such that W ∩C[[t ]] = C and
C((t))/(W + C[[t ]]) is finite dimensional. Furthermore, one can
recover the data (C,p, t) from W .
Remark. This construction is related to the action of the
Virasoro algebra on some natural line bundles over the moduli
spaces of curves, studied by Kontsevich,
Beilinson-Schechtman, and Arbarello-De Concini-Kac-Procesi.
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Generalized Krichever map

Slight generalization: consider a curve C with n marked points
p1, . . . ,pn with formal parameters t1, . . . , tn. Get an embedding

H0(C \ {p1, . . . ,pn},O) ↪→ H :=
n⊕

i=1

C((ti)).

This is still a point of the appropriate Sato Grassmannian
SG(H).

We would like to use this construction to obtain
compactifications of the moduli space of curvesMg,n. Note
that the above construction works for a singular projective curve
(reduced and connected), provided O(p1 + . . .+ pn) is ample,
i.e., there is at least one marked point on each irreducible
component of C.
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Moduli of curves with nonspecial divisors

Consider the moduli stack Uns
g,n of (C,p1, . . . ,pn), where C has

arithmetic genus g, p1, . . . ,pn are smooth and distinct, such
that O(p1 + . . .+ pn) is ample and nonspecial, i.e.,
H1(C,O(p1 + . . .+ pn)) = 0. Consider enhanced spaces

Ũns,(∞) G- Ũns
g,n

(C∗)n
- Uns

g,n

corresponding to choices of formal parameters or nonzero
tangent vectors at each marked point. Here G is the group of
formal changes

ti 7→ ti + c2,i t2
i + c3,i t3

i + . . .

Note that we necessarily have n ≥ g.
Example. For g = 0 the restriction on marked points is that
O(p1 + . . .+ pn) is ample. The moduli stack Uns

0,n is related to
Boggi-Kontsevich compactification ofM0,n
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Moduli of curves with nonspecial divisors

There is a natural map from Ũns
g,n to the Grassmannian

G(n − g,n) defined as follows. The short exact sequence

0→ OC → OC(p1 + . . .+ pn)→
n⊕

i=1

Tpi C → 0

gives rise to an exact sequence
n⊕

i=1

Tpi C → H1(OC)→ H1(OC(p1 + . . .+ pn)) = 0,

The kernel of the first arrow is an (n− g)-dimensional subspace
in Cn.

For each subset of indices S ⊂ [1,n] with |S| = g, the preimage
of the corresponding standard cell in G(n − g,n) is the open
subset U(S) ⊂ Ũns

g,n consisting of (C,p1 + . . .+ pn) such that
H1(C,O(

∑
i∈S pi)) = 0.
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Moduli of curves with nonspecial divisors

Theorem. The Krichever map defines a locally closed
embedding Ũns,(∞) ↪→ SG(H).
Its image is the closed subset of the locus SGns(H) consisting
of W such that H = W +H≥−1. The image consists of W such
that W ·W ⊂W .
The action of G on SGns(H) is free, and the quotient has an
open covering by infinite-dimensional affine spaces.
The moduli space Ũns

g,n is a scheme of finite type, affine over the
Grassmannian G(n − g,n).
There is a natural (C∗)n-action on Ũns

g,n (rescaling the tangent
vectors at the marked points), compatible with the standard
(C∗)n-action on G(n − g,n).
The invariant subscheme of the diagonal C∗ ⊂ (C∗)n in Ũns

g,n is a
section of a map to G(n− g,n). C∗-action has positive weights.
Remark. Taking GIT quotients of Ũns

g,n one gets birational
projective models of Mg,n.
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Moduli of curves with nonspecial divisors, g = n = 1

Example. g = n = 1. The algebra O(C \ p) is generated by x
and y such that

x =
1
t2 + . . . , y =

1
t3 + . . .

Using the ambiguity x 7→ x + a, y 7→ y + bx + c, we can choose
x and y uniquely so that

y2 = x3 + px + q.

Thus, Ũns
1,1 = A2.

C∗ acts with the weights (2,3).
The unique C∗-invariant point, p = q = 0, corresponds to the
cuspidal cubic.
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Moduli of curves with nonspecial divisors, g = 0

Example. g = 0, n ≥ 3. The algebra O(C \ {p1, . . . ,pn}) is
generated by x1, . . . , xn, where xi ∈ H0(C,O(pi)), and
xi =

1
ti
+ . . .. The defining relations are

xixj = αijxj + αjixi + cij , for i 6= j , with

(?) cij = αikαjk − αijαjk − αjiαik .

Normalization: αi,i+1 = 0. Then xi are unique.
The relation (?) gives the defining equations of Ũns

0,n, same as
the miniversal deformation of the coordinate cross in Cn.

Remark. The only singularities that a reduced curve of
arithmetic genus 0 can have are rational m-fold points.
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Moduli of curves with nonspecial divisors, g = 0

(C∗)n-action: (λ−1)∗αij = λiαij .
For each character χ(λ) = λa1

1 . . . λan
n of (C∗)n can consider the

GIT-quotient Ũns
0,n //χ (C

∗)n.
If a1 > 0, . . . ,an > 0 then stable (=semistable) points
correspond to (C,p1, . . . ,pn) such that each irreducible
component has ≥ 3 special points. This is exactly
Boggi-Kontsevich moduli space.

We get a realization of this space by explicit equations in
(Pn−3)n. Namely, in equation (?) we should view αij as
homogeneous coordinates on the i th copy of Pn−3.

Remark. For n > 5 it is not known whether the scheme Ũns
0,n (or

its GIT-quotient) is normal or even reduced.
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Case g = 1: fundamental decomposition

Proposition. A curve (C,p1, . . . ,pn) is in Ũns
1,n if and only if it has

a fundamental decomposition

C = E ∪ R1 ∪ . . . ∪ Rr ,

where Ri are connected tails of arithmetic genus 0 attached to
E transversally at distinct points, and E is of one of the
following types:

smooth elliptic curve;
cycle of projective lines (standard m-gon);
elliptic m-fold curve.

Furthermore, there should be at least one marked point on
every irreducible component.

Elliptic m-fold curves.
m = 1: cuspidal cubic;
m = 2: union of two projective lines glued in a tacnode;
m ≥ 3: union of m generic lines through a point in Pm−1.11
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Case g = 1: GIT stability conditions

Fix a rational character χ = (a1, . . . ,an) of (C∗)n. Let
(C,p1, . . . ,pn) be in our moduli space, with fundamental
decomposition C = E ∪ R1 ∪ . . . ∪ Rr . For a marked point pi
lying on an irreducible component C′ ' P1, we denote by N(pi)
the number of special points on C′. Define I0 ⊂ I ⊂ [1,n] and
J ⊂ [1,n] by

J = {j | pj 6∈ E ,N(pj) ≥ 3};
I = {i | pi ∈ E};
I0 = ∅ if E is at most nodal; otherwise,
I0 = {i ∈ I | N(pi) ≤ 2}.

Theorem. (C,p1, . . . ,pn) is π∗O(1)⊗ χ-semistable if and only if
ai ≥ 0 for all i ; ai = 0 for i 6∈ I ∪ J;∑

i∈I0 ai ≤ 1;∑
i∈I ai ≥ 1.

All these GIT quotients are projective.
12
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Case g = 1: GIT stability conditions

Example 1. All ai > 1. Then stability (=semistability) means
that there are ≥ 3 special points on the normalization of every
rational component of C.
Equivalently, there exists a birational map f : C̃ → C, where
(C̃, p̃1, . . . , p̃n) is Deligne-Mumford stable of genus 1, f
contracts the unmarked components in C̃.
Example 2. ai = a, a ∈ (1

n ,
1

n−2). Then stability means that
C = E (equivalently, C is Gorenstein with trivial ωC ,
equivalently, H1(C,O(pi)) = 0 for each i), and (C,p1, . . . ,pn)
has no infinitesimal symmetries.

The moduli spaces in both Examples were first constructed by
David Smyth. The moduli space in Example 2 was studied in
[P-Lekili]. We showed that it is a normal Gorenstein projective
scheme, given by explicit equations.
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Case g = 1: Strongly non-special curves

Consider (C,p1, . . . ,pn) with H1(C,O(pi)) = 0 for each i , as in
Example 2. Fix a nonzero global section ω ∈ H0(C, ωC).
Assume n ≥ 3. For i 6= j , there is hij ∈ H0(C,O(pi + pj)),
unique up to adding a constant, such that Respi hijω) = 1,
Respj hijω) = −1.
Normalize h12 and h13 by h12(p3) = 0, h13(p2) = 0. Then the
algebra O(C \ {p1, . . . ,pn}) is generated by
x2 = h12, . . . , xn = h1n, with defining relations

xixj = x2x3 + cijxj + cjixi + dij ,

x2x2
3 = x2

2 x3 + ax2x3 + bx2 + cx3 + d ,

where cij = h1i(xj).
The (normalized) coefficients become (weighted) projective
coordinates on the moduli space. For n ≥ 5 all coordinates are
expressed in terms of cij and a (which have weight 1). One can
write explicitly defining equations between them.14
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Case n = g

Set D = p1 + . . .+ pg . Then for each i there exist
xi ∈ H0(C,O(D + pi)), yi ∈ H0(C,O(D + 2pi)) such that

xi =
1
t2
i
+ . . . , yi =

1
t3
i
+ . . .

at pi . The algebra O(C \ D) is generated by
(x1, . . . , xg , y1, . . . , yg).

Using the ambiguity xi 7→ x + ai , yi 7→ yi + bixi + ci , we can
choose xi and yi uniquely so that

y2
i − x3

i ∈ H0(C,O(3D)), xi(y2
i − x3

i ) ∈ H0(C,O(4D)).

Note that (xn
i , yixn

i ) is a basis of O(C \ D).
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Case n = g ≥ 2: equations of the universal curve

xixj = αjiyi + αijyj + γjixi + γijxj +
∑

k 6=i,j ck
ij xk + aij ,

xiyj = αijx2
j + βjiyi + γijyj + rjixi + δijxj +

∑
k 6=i,j ek

ij xk + bij ,

yiyj = βjix2
i + βijx2

j + εjiyi + εijyj + ψjixi + ψijxj +
∑

k 6=i,j lkij xk + uij ,

y2
i = x3

i + pixi +
∑

j 6=i g j
i yj +

∑
j 6=i k j

i xj + qi ,

where i and j are distinct.

Using Gröbner basis technique find:

ck
ij = αikαjk ,

g j
i = −α

3
ij ,

rji = εji − αijα
2
ji ,

etc., so that all the coefficients are expressed in terms of
(αij , βij , γij , εij ,pi). These coordinates satisfy further equations,
and Ũns

g,g is the corresponding affine scheme.
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Case n = g ≥ 2: GIT quotients

GIT-stability condition depends on a character
χ(λ) = (a1, . . . ,an) of (C∗)n.
All GIT-quotients are projective, empty unless (a1, . . . ,an)
belongs to the cone generated by (2ei − ej).
Wall structure in Rn: the codim-1 walls are cones spanned by
subsets of (2ei − ej ,3ei − ej ,ei).

Main chamber C0: a1 > 0, . . . ,an > 0.
For χ ∈ C0 every (C,p1, . . . ,pg) with smooth C is χ-stable.

Question. Can one describe geometrically the stability
condition in the main chamber?
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Moduli of A∞-structures

Recall that an A∞-algebra is a graded vector space A with
operations mn : A⊗n → A of degree 2− n, for n ≥ 1, satisfying
A∞-identities

∑
i+j=n[mi ,mj ] = 0 (where [·, ·] is the

Gerstenhaber bracket).
For a given finite-dimensional associative algebra A can
consider all A∞-structures (m•) on A with m1 = 0 and m2 the
given product on A. These are parametrized by an
infinite-dimensional affine scheme A∞(A). There is a natural
action of an infinite-dimensional unipotent group G of gauge
equivalences on A∞(A). We consider the moduli space
M∞(A) = A∞(A)/G.
Theorem. Assume HH1(A)j = 0 for j < 0. Then the action of G
on A∞(A) admits a section, so thatM∞(A) is an affine
scheme. If in addition HH2(A)<0 is finite-dimensional then
M∞(A) is of finite type.
(Here HH•(A) is the Hochschild cohomology.)18
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Moduli of curves and moduli of A∞-structures

Given a curve (C,p1, . . . ,pg) such that H1(O(p1 + . . .+pg)) = 0
consider the algebra E = Ext∗(G,G), where

G = OC ⊕Op1 ⊕ . . .⊕Opg .

Generators: Ai ∈ Hom(OC ,Opi ), Bi ∈ Ext1(Opi ,OC). Note that
the classes B1A1, . . . ,BgAg form a basis of
Ext1(OC ,OC) = H1(C,O).
A choice of nonzero tangent vectors at p1, . . . ,pn gives an
isomorphism of E with the fixed algebra Eg . By homological
perturbation, for each curve (C,p1, . . . ,pn) there is a canonical
gauge equivalence class of A∞-structures on Eg .
Theorem. This defines an isomorphism Ũns

g,g 'M∞(Eg).
Remark. There is a similar interpretation of Ũns

g,n for n > g as
moduli of A∞-structures. In this case m2 is also allowed to vary.
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