Moduli spaces of curves with non-special divisors

Alexander Polishchuk

University of Oregon

1

Outline

- 1. Moduli of curves with nonspecial divisors and the Krichever map.
- 2. The case $q = 1$.
- 3. The case $n = g$.
- 4. Relation to moduli of *A*∞-structures.

Krichever map

Let *C* be a smooth projective curve, *p* a point, *t* a formal parameter at *p*. Then Laurent series expansion in *t* defines an embedding

$$
H^0(C\setminus\{p\},\mathcal{O})\hookrightarrow \mathbb{C}((t)).
$$

Let *W* be the image of this embedding. Then we have identifications

W ∩ ℂ[[*t*]] = *H*⁰(*C*, *O*) = ℂ, ℂ((*t*))/(*W* + ℂ[[*t*]]) = *H*¹(*C*, *O*).

Thus, we get a point of the Sato Grassmannian *SG* parametrizing subspaces of $\mathbb{C}((t))$ such that $W \cap \mathbb{C}[[t]] = \mathbb{C}$ and $\mathbb{C}((t))/(W + \mathbb{C}[[t]])$ is finite dimensional. Furthermore, one can recover the data (*C*, *p*, *t*) from *W*.

Remark. This construction is related to the action of the Virasoro algebra on some natural line bundles over the moduli spaces of curves, studied by Kontsevich, Beilinson-Schechtman, and Arbarello-De Concini-Kac-Procesi. ³

Krichever map

Let *C* be a smooth projective curve, *p* a point, *t* a formal parameter at *p*. Then Laurent series expansion in *t* defines an embedding

$$
H^0(C\setminus\{p\},\mathcal{O})\hookrightarrow \mathbb{C}((t)).
$$

Let *W* be the image of this embedding. Then we have identifications

W ∩ ℂ[[*t*]] = *H*⁰(*C*, *O*) = ℂ, ℂ((*t*))/(*W* + ℂ[[*t*]]) = *H*¹(*C*, *O*).

Thus, we get a point of the Sato Grassmannian *SG* parametrizing subspaces of $\mathbb{C}((t))$ such that $W \cap \mathbb{C}[[t]] = \mathbb{C}$ and $\mathbb{C}((t))/(W + \mathbb{C}[[t]])$ is finite dimensional. Furthermore, one can recover the data (C, p, t) from W .

Remark. This construction is related to the action of the Virasoro algebra on some natural line bundles over the moduli spaces of curves, studied by Kontsevich, Beilinson-Schechtman, and Arbarello-De Concini-Kac-Procesi. ³

Krichever map

Let *C* be a smooth projective curve, *p* a point, *t* a formal parameter at *p*. Then Laurent series expansion in *t* defines an embedding

$$
H^0(C\setminus\{p\},\mathcal{O})\hookrightarrow \mathbb{C}((t)).
$$

Let *W* be the image of this embedding. Then we have identifications

W ∩ ℂ[[*t*]] = *H*⁰(*C*, *O*) = ℂ, ℂ((*t*))/(*W* + ℂ[[*t*]]) = *H*¹(*C*, *O*).

Thus, we get a point of the Sato Grassmannian *SG* parametrizing subspaces of $\mathbb{C}((t))$ such that $W \cap \mathbb{C}[[t]] = \mathbb{C}$ and $\mathbb{C}((t))/(W + \mathbb{C}[[t]])$ is finite dimensional. Furthermore, one can recover the data (C, p, t) from W .

Remark. This construction is related to the action of the Virasoro algebra on some natural line bundles over the moduli spaces of curves, studied by Kontsevich,

Beilinson-Schechtman, and Arbarello-De Concini-Kac-Procesi. ³

Generalized Krichever map

Slight generalization: consider a curve *C* with *n* marked points p_1, \ldots, p_n with formal parameters t_1, \ldots, t_n . Get an embedding

$$
H^0(C\setminus\{p_1,\ldots,p_n\},\mathcal{O})\hookrightarrow \mathcal{H}:=\bigoplus_{i=1}^n\mathbb{C}((t_i)).
$$

This is still a point of the appropriate Sato Grassmannian *SG*(H).

We would like to use this construction to obtain compactifications of the moduli space of curves M*g*,*n*. Note that the above construction works for a singular projective curve (reduced and connected), provided $\mathcal{O}(p_1 + \ldots + p_n)$ is ample, i.e., there is at least one marked point on each irreducible component of *C*.

Slight generalization: consider a curve *C* with *n* marked points p_1, \ldots, p_n with formal parameters t_1, \ldots, t_n . Get an embedding

$$
H^0(C\setminus\{p_1,\ldots,p_n\},\mathcal{O})\hookrightarrow \mathcal{H}:=\bigoplus_{i=1}^n\mathbb{C}((t_i)).
$$

This is still a point of the appropriate Sato Grassmannian *SG*(H).

We would like to use this construction to obtain compactifications of the moduli space of curves M*g*,*n*. Note that the above construction works for a singular projective curve (reduced and connected), provided $\mathcal{O}(p_1 + \ldots + p_n)$ is ample, i.e., there is at least one marked point on each irreducible component of *C*.

Consider the moduli stack $\mathcal{U}^{ns}_{g,n}$ of (C, p_1, \ldots, p_n) , where C has arithmetic genus g, p_1, \ldots, p_n are smooth and distinct, such that $\mathcal{O}(p_1 + \ldots + p_n)$ is ample and nonspecial, i.e., $H^1(C, \mathcal{O}(p_1 + \ldots + p_n)) = 0.$ Consider enhanced spaces

$$
\widetilde{\mathcal{U}}^{ns,(\infty)} \xrightarrow{\mathfrak{G}} \widetilde{\mathcal{U}}^{ns}_{g,n} \xrightarrow{(\mathbb{C}^*)^n} \mathcal{U}^{ns}_{g,n}
$$

corresponding to choices of formal parameters or nonzero tangent vectors at each marked point. Here $\mathfrak G$ is the group of formal changes

$$
t_i\mapsto t_i+c_{2,i}t_i^2+c_{3,i}t_i^3+\ldots
$$

Note that we necessarily have $n > q$. Example. For $q = 0$ the restriction on marked points is that $\mathcal{O}(\rho_1 + \ldots + \rho_n)$ is ample. The moduli stack $\mathcal{U}^{ns}_{0,n}$ is related to Boggi-Kontsevich compactification of $\mathcal{M}_{0,n}$

Consider the moduli stack $\mathcal{U}^{ns}_{g,n}$ of (C, p_1, \ldots, p_n) , where C has arithmetic genus g, p_1, \ldots, p_n are smooth and distinct, such that $\mathcal{O}(p_1 + \ldots + p_n)$ is ample and nonspecial, i.e., $H^1(C, \mathcal{O}(p_1 + \ldots + p_n)) = 0.$ Consider enhanced spaces

> $\widetilde{\mathcal{U}}^{\mathsf{ns},(\infty)} \stackrel{\mathfrak{G}}{\longrightarrow} \widetilde{\mathcal{U}}^{\mathsf{ns}}_{g,n}$ (C∗) *ⁿ* ✲ ^U *ns g*,*n*

corresponding to choices of formal parameters or nonzero tangent vectors at each marked point. Here $\mathfrak G$ is the group of formal changes

$$
t_i\mapsto t_i+c_{2,i}t_i^2+c_{3,i}t_i^3+\ldots
$$

Note that we necessarily have $n > q$.

Example. For $q = 0$ the restriction on marked points is that $\mathcal{O}(\rho_1 + \ldots + \rho_n)$ is ample. The moduli stack $\mathcal{U}^{ns}_{0,n}$ is related to Boggi-Kontsevich compactification of $\mathcal{M}_{0,n}$

There is a natural map from $\mathcal{U}_{g,n}^{ns}$ to the Grassmannian
 $G(x_1, x_2)$ defined as following. The short meaths are not $G(n-g, n)$ defined as follows. The short exact sequence

$$
0\to \mathcal{O}_C \to \mathcal{O}_C(p_1+\ldots+p_n) \to \bigoplus_{i=1}^n T_{p_i}C \to 0
$$

gives rise to an exact sequence

$$
\bigoplus_{i=1}^n T_{p_i}C \to H^1(\mathcal{O}_C) \to H^1(\mathcal{O}_C(p_1 + \ldots + p_n)) = 0,
$$

The kernel of the first arrow is an $(n - g)$ -dimensional subspace in C *n* .

For each subset of indices $S \subset [1, n]$ with $|S| = q$, the preimage of the corresponding standard cell in $G(n-g, n)$ is the open $\mathsf{subset}\ \mathcal{U}(\mathcal{S})\subset \widetilde{\mathcal{U}}_{g,n}^{ns}$ consisting of $(C,\rho_1+\ldots+\rho_n)$ such that $H^1(C,\mathcal{O}(\sum_{i\in S}\rho_i))=0.$

There is a natural map from $\mathcal{U}_{g,n}^{ns}$ to the Grassmannian
 $G(x_1, x_2)$ defined as following. The short meaths are not $G(n - q, n)$ defined as follows. The short exact sequence

$$
0\to \mathcal{O}_C \to \mathcal{O}_C(p_1+\ldots+p_n) \to \bigoplus_{i=1}^n T_{p_i}C \to 0
$$

gives rise to an exact sequence

$$
\bigoplus_{i=1}^n T_{p_i}C \to H^1(\mathcal{O}_C) \to H^1(\mathcal{O}_C(p_1 + \ldots + p_n)) = 0,
$$

The kernel of the first arrow is an $(n - g)$ -dimensional subspace in C *n* .

For each subset of indices $S \subset [1, n]$ with $|S| = g$, the preimage of the corresponding standard cell in $G(n-g, n)$ is the open $\mathsf{subset}\,\mathcal{U}(\mathcal{S})\subset \widetilde{\mathcal{U}}_{g,n}^{ns}$ consisting of $(\mathcal{C},p_1+\ldots+p_n)$ such that $H^1(C,\mathcal{O}(\sum_{i\in S}p_i))=0.$

Theorem. The Krichever map defines a locally closed $\mathsf{embedding} \ \mathcal{U}^{\mathsf{ns},(\infty)} \hookrightarrow \mathsf{SG}(\mathcal{H}).$

Its image is the closed subset of the locus $SG^{ns}(\mathcal{H})$ consisting of *W* such that $H = W + H_{\geq -1}$. The image consists of *W* such that $W \cdot W \subset W$.

The action of $\mathfrak G$ on $SG^{ns}(\mathcal{H})$ is free, and the quotient has an open covering by infinite-dimensional affine spaces.

The moduli space $\mathcal{U}_{g,n}^{ns}$ is a scheme of finite type, affine over the Grassmannian *G*(*n* − *g*, *n*).

There is a natural $(\mathbb{C}^*)^n$ -action on $\widetilde{\mathcal{U}}^{ns}_{g,n}$ (rescaling the tangent vectors at the marked points), compatible with the standard $({\mathbb C}^*)^n$ -action on *G*(*n* − *g*, *n*).

The invariant subscheme of the diagonal $C^* \subset (C^*)^n$ in $\widetilde{\mathcal{U}}_{g,n}^{ns}$ is a section of a map to $G(n-g, n)$. \mathbb{C}^* -action has positive weights. Remark. Taking GIT quotients of $\mathcal{U}_{g,n}^{ns}$ one gets birational projective models of *Mg*,*n*. 7

Theorem. The Krichever map defines a locally closed $\mathsf{embedding} \ \mathcal{U}^{\mathsf{ns},(\infty)} \hookrightarrow \mathsf{SG}(\mathcal{H}).$

Its image is the closed subset of the locus $SG^{ns}(\mathcal{H})$ consisting of *W* such that $H = W + H_{\geq -1}$. The image consists of *W* such that $W \cdot W \subset W$.

The action of $\mathfrak G$ on $SG^{ns}(\mathcal{H})$ is free, and the quotient has an open covering by infinite-dimensional affine spaces.

The moduli space $\mathcal{U}_{g,n}^{ns}$ is a scheme of finite type, affine over the Grassmannian *G*(*n* − *g*, *n*).

There is a natural $(\mathbb{C}^*)^n$ -action on $\widetilde{\mathcal{U}}_{g,n}^{ns}$ (rescaling the tangent vectors at the marked points), compatible with the standard $(C^*)^n$ -action on $G(n-g, n)$.

The invariant subscheme of the diagonal $\mathbb{C}^* \subset (\mathbb{C}^*)^n$ in $\widetilde{\mathcal{U}}_{g,n}^{ns}$ is a section of a map to $G(n-g, n)$. \mathbb{C}^* -action has positive weights. Remark. Taking GIT quotients of $\mathcal{U}_{g,n}^{ns}$ one gets birational projective models of *Mg*,*n*.

Theorem. The Krichever map defines a locally closed $\mathsf{embedding} \ \mathcal{U}^{\mathsf{ns},(\infty)} \hookrightarrow \mathsf{SG}(\mathcal{H}).$

Its image is the closed subset of the locus $SG^{ns}(\mathcal{H})$ consisting of *W* such that $H = W + H_{\geq -1}$. The image consists of *W* such that $W \cdot W \subset W$.

The action of $\mathfrak G$ on $SG^{ns}(\mathcal{H})$ is free, and the quotient has an open covering by infinite-dimensional affine spaces.

The moduli space $\mathcal{U}_{g,n}^{ns}$ is a scheme of finite type, affine over the Grassmannian *G*(*n* − *g*, *n*).

There is a natural $(\mathbb{C}^*)^n$ -action on $\widetilde{\mathcal{U}}_{g,n}^{ns}$ (rescaling the tangent vectors at the marked points), compatible with the standard $(C^*)^n$ -action on $G(n-g, n)$.

The invariant subscheme of the diagonal $\mathbb{C}^* \subset (\mathbb{C}^*)^n$ in $\widetilde{\mathcal{U}}_{g,n}^{ns}$ is a section of a map to $G(n-g, n)$. \mathbb{C}^* -action has positive weights. Remark. Taking GIT quotients of $\mathcal{U}_{g,n}^{ns}$ one gets birational projective models of *Mg*,*n*.

Example. $g = n = 1$. The algebra $\mathcal{O}(C \setminus p)$ is generated by x and *y* such that

$$
x = \frac{1}{t^2} + \dots
$$
, $y = \frac{1}{t^3} + \dots$

Using the ambiguity $x \mapsto x + a$, $y \mapsto y + bx + c$, we can choose *x* and *y* uniquely so that

$$
y^2 = x^3 + px + q.
$$

Thus, $\widetilde{\mathcal{U}}_{1,1}^{\mathsf{ns}} = \mathbb{A}^2$.

 \mathbb{C}^* acts with the weights $(2,3)$.

The unique \mathbb{C}^* -invariant point, $p = q = 0$, corresponds to the cuspidal cubic.

Example. $q = n = 1$. The algebra $\mathcal{O}(C \setminus p)$ is generated by x and *y* such that

$$
x = \frac{1}{t^2} + \dots
$$
, $y = \frac{1}{t^3} + \dots$

Using the ambiguity $x \mapsto x + a$, $y \mapsto y + bx + c$, we can choose *x* and *y* uniquely so that

$$
y^2 = x^3 + px + q.
$$

Thus, $\widetilde{\mathcal{U}}_{1,1}^{\text{ns}} = \mathbb{A}^2$. \mathbb{C}^* acts with the weights $(2, 3)$. The unique \mathbb{C}^* -invariant point, $p = q = 0$, corresponds to the cuspidal cubic.

Example. $g = 0$, $n \geq 3$. The algebra $\mathcal{O}(C \setminus \{p_1, \ldots, p_n\})$ is generated by x_1, \ldots, x_n , where $x_i \in H^0(\mathcal{C}, \mathcal{O}(\rho_i)),$ and $x_i = \frac{1}{t_i}$ $\frac{1}{t_{i}} + \ldots$ The defining relations are

$$
x_i x_j = \alpha_{ij} x_j + \alpha_{ji} x_i + c_{ij}, \text{ for } i \neq j, \text{ with}
$$

$$
(\star) \; c_{ij} = \alpha_{ik}\alpha_{jk} - \alpha_{ij}\alpha_{jk} - \alpha_{ji}\alpha_{ik}.
$$

Normalization: $\alpha_{i,i+1} = 0$. Then x_i are unique.

The relation (\star) gives the defining equations of $\mathcal{U}_{0,n}^{ns}$, same as the miniversal deformation of the coordinate cross in C *n* .

Remark. The only singularities that a reduced curve of arithmetic genus 0 can have are rational *m*-fold points.

Example. $g = 0$, $n \ge 3$. The algebra $\mathcal{O}(C \setminus \{p_1, \ldots, p_n\})$ is generated by x_1, \ldots, x_n , where $x_i \in H^0(\mathcal{C}, \mathcal{O}(\rho_i)),$ and $x_i = \frac{1}{t_i}$ $\frac{1}{t_{i}} + \ldots$ The defining relations are

$$
x_i x_j = \alpha_{ij} x_j + \alpha_{ji} x_i + c_{ij}, \text{ for } i \neq j, \text{ with}
$$

$$
(\star) \; c_{ij} = \alpha_{ik}\alpha_{jk} - \alpha_{ij}\alpha_{jk} - \alpha_{ji}\alpha_{ik}.
$$

Normalization: $\alpha_{i,i+1} = 0$. Then x_i are unique.

The relation (\star) gives the defining equations of $\mathcal{U}_{0,n}^{ns}$, same as the miniversal deformation of the coordinate cross in \mathbb{C}^n .

Remark. The only singularities that a reduced curve of arithmetic genus 0 can have are rational *m*-fold points.

Example. $g = 0$, $n \ge 3$. The algebra $\mathcal{O}(C \setminus \{p_1, \ldots, p_n\})$ is generated by x_1, \ldots, x_n , where $x_i \in H^0(\mathcal{C}, \mathcal{O}(\rho_i)),$ and $x_i = \frac{1}{t_i}$ $\frac{1}{t_{i}} + \ldots$ The defining relations are

$$
x_i x_j = \alpha_{ij} x_j + \alpha_{ji} x_i + c_{ij}, \text{ for } i \neq j, \text{ with}
$$

$$
(\star) \; c_{ij} = \alpha_{ik}\alpha_{jk} - \alpha_{ij}\alpha_{jk} - \alpha_{ji}\alpha_{ik}.
$$

Normalization: $\alpha_{i,i+1} = 0$. Then x_i are unique.

The relation (\star) gives the defining equations of $\mathcal{U}_{0,n}^{ns}$, same as the miniversal deformation of the coordinate cross in \mathbb{C}^n .

Remark. The only singularities that a reduced curve of arithmetic genus 0 can have are rational *m*-fold points.

 $({\mathbb C}^*)^n$ -action: $(\lambda^{-1})^* \alpha_{ij} = \lambda_i \alpha_{ij}$. For each character $\chi(\lambda) = \lambda_1^{a_1} \dots \lambda_n^{a_n}$ of $(\mathbb{C}^*)^n$ can consider the GIT-quotient $\widetilde{\mathcal{U}}_{0,n}^{\mathsf{ns}} \mathcal{U}_{\chi}(\mathbb{C}^*)^n.$ If $a_1 > 0, \ldots, a_n > 0$ then stable (=semistable) points correspond to (C, p_1, \ldots, p_n) such that each irreducible component has ≥ 3 special points. This is exactly Boggi-Kontsevich moduli space.

We get a realization of this space by explicit equations in (P *n*−3) *n* . Namely, in equation (?) we should view α*ij* as homogeneous coordinates on the *i*th copy of P *n*−3 .

Remark. For $n > 5$ it is not known whether the scheme $\bar{\mathcal{U}}_{0,n}^{ns}$ (or its GIT-quotient) is normal or even reduced.

 $({\mathbb C}^*)^n$ -action: $(\lambda^{-1})^* \alpha_{ij} = \lambda_i \alpha_{ij}$. For each character $\chi(\lambda) = \lambda_1^{a_1} \dots \lambda_n^{a_n}$ of $(\mathbb{C}^*)^n$ can consider the GIT-quotient $\widetilde{\mathcal{U}}_{0,n}^{\mathsf{ns}} \mathcal{U}_{\chi}(\mathbb{C}^*)^n.$ If $a_1 > 0, \ldots, a_n > 0$ then stable (=semistable) points correspond to (C, p_1, \ldots, p_n) such that each irreducible component has ≥ 3 special points. This is exactly Boggi-Kontsevich moduli space.

We get a realization of this space by explicit equations in (P *n*−3) *n* . Namely, in equation (?) we should view α*ij* as homogeneous coordinates on the *i*th copy of \mathbb{P}^{n-3} .

Remark. For $n > 5$ it is not known whether the scheme $\bar{\mathcal{U}}_{0,n}^{ns}$ (or its GIT-quotient) is normal or even reduced.

 $({\mathbb C}^*)^n$ -action: $(\lambda^{-1})^* \alpha_{ij} = \lambda_i \alpha_{ij}$. For each character $\chi(\lambda) = \lambda_1^{a_1} \dots \lambda_n^{a_n}$ of $(\mathbb{C}^*)^n$ can consider the GIT-quotient $\widetilde{\mathcal{U}}_{0,n}^{\mathsf{ns}} \mathcal{U}_{\chi}(\mathbb{C}^*)^n.$ If $a_1 > 0, \ldots, a_n > 0$ then stable (=semistable) points correspond to (C, p_1, \ldots, p_n) such that each irreducible component has ≥ 3 special points. This is exactly Boggi-Kontsevich moduli space.

We get a realization of this space by explicit equations in (P *n*−3) *n* . Namely, in equation (?) we should view α*ij* as homogeneous coordinates on the *i*th copy of \mathbb{P}^{n-3} .

Remark. For $n > 5$ it is not known whether the scheme $\mathcal{U}_{0,n}^{ns}$ (or its GIT-quotient) is normal or even reduced.

Case $q = 1$: fundamental decomposition

Proposition. A curve (C, p_1, \ldots, p_n) is in $\mathcal{U}_{1,n}^{ns}$ if and only if it has a fundamental decomposition

$$
C = E \cup R_1 \cup \ldots \cup R_r,
$$

where *Rⁱ* are connected tails of arithmetic genus 0 attached to *E* transversally at distinct points, and *E* is of one of the following types:

- smooth elliptic curve;
- cycle of projective lines (standard *m*-gon);
- elliptic *m*-fold curve.

Furthermore, there should be at least one marked point on every irreducible component.

Elliptic *m*-fold curves.

- $m = 1$: cuspidal cubic;
- $m = 2$: union of two projective lines glued in a tacnode;
- *m* ≥ 3: union of *m* generic lines through a point in \mathbb{P}^{m-1} .

Case $q = 1$: fundamental decomposition

Proposition. A curve (C, p_1, \ldots, p_n) is in $\mathcal{U}_{1,n}^{ns}$ if and only if it has a fundamental decomposition

$$
C = E \cup R_1 \cup \ldots \cup R_r,
$$

where *Rⁱ* are connected tails of arithmetic genus 0 attached to *E* transversally at distinct points, and *E* is of one of the following types:

- smooth elliptic curve;
- cycle of projective lines (standard *m*-gon);
- elliptic *m*-fold curve.

Furthermore, there should be at least one marked point on every irreducible component.

Elliptic *m*-fold curves.

- $m = 1$: cuspidal cubic;
- $m = 2$: union of two projective lines glued in a tacnode;
- $m \geq 3$: union of *m* generic lines through a point in \mathbb{P}^{m-1} .

Fix a rational character $\chi = (\boldsymbol{a}_1, \dots, \boldsymbol{a}_n)$ of $(\mathbb{C}^*)^n$. Let (C, p_1, \ldots, p_n) be in our moduli space, with fundamental $\mathsf{decomposition}\; \mathcal{C} = E\cup R_1\cup \ldots \cup R_r.$ For a marked point ρ_i lying on an irreducible component $C' \simeq \mathbb{P}^1,$ we denote by $\mathcal{N}(\rho_i)$ the number of special points on C' . Define $I_0 \subset I \subset [1,n]$ and *J* ⊂ [1, *n*] by

$$
\blacksquare J = \{j \mid p_j \notin E, N(p_j) \geq 3\};
$$

$$
I=\{i\mid p_i\in E\};
$$

$$
I_0 = \emptyset
$$
 if E is at most nodal; otherwise,

*I*₀ = {*i* \in *I* | *N*(*p*_{*i*}) \le 2}.

Theorem. $(\textit{C},\textit{p}_1,\ldots,\textit{p}_n)$ is $\pi^*\mathcal{O}(1)\otimes\chi$ -semistable if and only if

- *a*_{*i*} $≥$ 0 for all *i*; *a*_{*i*} = 0 for *i* ∉ *I* ∪ *J*;
- $\sum_{i\in I_0} a_i \leq 1$;
 $\sum_{i\in I} a_i \geq 1$.

$$
\blacksquare \sum_{i\in I} a_i \geq 1.
$$

All these GIT quotients are projective.

Fix a rational character $\chi = (\boldsymbol{a}_1, \dots, \boldsymbol{a}_n)$ of $(\mathbb{C}^*)^n$. Let (C, p_1, \ldots, p_n) be in our moduli space, with fundamental $\mathsf{decomposition}\; \mathcal{C} = E\cup R_1\cup \ldots \cup R_r.$ For a marked point ρ_i lying on an irreducible component $C' \simeq \mathbb{P}^1,$ we denote by $\mathcal{N}(\rho_i)$ the number of special points on C' . Define $I_0 \subset I \subset [1,n]$ and *J* ⊂ [1, *n*] by

$$
\blacksquare J = \{j \mid p_j \notin E, N(p_j) \geq 3\};
$$

$$
I=\{i\mid p_i\in E\};
$$

$$
I_0 = \emptyset
$$
 if E is at most nodal; otherwise,

$$
I_0=\{i\in I\mid N(p_i)\leq 2\}.
$$

Theorem. $(\textit{C},\textit{p}_1,\ldots,\textit{p}_n)$ is $\pi^*\mathcal{O}(1)\otimes\chi$ -semistable if and only if

$$
\blacksquare \ \ a_i \geq 0 \ \text{for all} \ \ i; \ a_i = 0 \ \text{for} \ \ i \not\in I \cup J;
$$

$$
\blacksquare \sum_{i\in I_0} a_i \leq 1;
$$

$$
\sum_{i\in I} a_i \geq 1
$$

$$
\sum_{i\in I} a_i \geq 1.
$$

All these GIT quotients are projective.

Example 1. All $a_i > 1$. Then stability (=semistability) means that there are ≥ 3 special points on the normalization of every rational component of *C*.

Equivalently, there exists a birational map $f: C \to C$, where $(C, \widetilde{p}_1, \ldots, \widetilde{p}_n)$ is Deligne-Mumford stable of genus 1, *f* contracts the unmarked components in \tilde{C} .

Example 2. $a_i = a$, $a \in (\frac{1}{n})$ $\frac{1}{n}, \frac{1}{n-2}$). Then stability means that $C = E$ (equivalently, *C* is Gorenstein with trivial ω_C , equivalently, $H^1(C, \mathcal{O}(p_i)) = 0$ for each *i*), and (C, p_1, \ldots, p_n) has no infinitesimal symmetries.

The moduli spaces in both Examples were first constructed by David Smyth. The moduli space in Example 2 was studied in [P-Lekili]. We showed that it is a normal Gorenstein projective scheme, given by explicit equations.

Example 1. All $a_i > 1$. Then stability (=semistability) means that there are ≥ 3 special points on the normalization of every rational component of *C*.

Equivalently, there exists a birational map $f: C \to C$, where $(C, \widetilde{p}_1, \ldots, \widetilde{p}_n)$ is Deligne-Mumford stable of genus 1, *f* contracts the unmarked components in \tilde{C} . Example 2. $a_i = a$, $a \in (\frac{1}{n})$ $\frac{1}{n}$, $\frac{1}{n-2}$). Then stability means that $C = E$ (equivalently, *C* is Gorenstein with trivial ω_C , equivalently, $H^1(C, \mathcal{O}(\rho_i)) = 0$ for each *i*), and $(C, \rho_1, \ldots, \rho_n)$ has no infinitesimal symmetries.

The moduli spaces in both Examples were first constructed by David Smyth. The moduli space in Example 2 was studied in [P-Lekili]. We showed that it is a normal Gorenstein projective scheme, given by explicit equations.

Example 1. All $a_i > 1$. Then stability (=semistability) means that there are ≥ 3 special points on the normalization of every rational component of *C*.

Equivalently, there exists a birational map $f: C \to C$, where $(C, \widetilde{p}_1, \ldots, \widetilde{p}_n)$ is Deligne-Mumford stable of genus 1, *f* contracts the unmarked components in \tilde{C} . Example 2. $a_i = a$, $a \in (\frac{1}{n})$ $\frac{1}{n}$, $\frac{1}{n-2}$). Then stability means that $C = E$ (equivalently, *C* is Gorenstein with trivial ω_C , equivalently, $H^1(C, \mathcal{O}(\rho_i)) = 0$ for each *i*), and $(C, \rho_1, \ldots, \rho_n)$ has no infinitesimal symmetries.

The moduli spaces in both Examples were first constructed by David Smyth. The moduli space in Example 2 was studied in [P-Lekili]. We showed that it is a normal Gorenstein projective scheme, given by explicit equations.

Case $g = 1$: Strongly non-special curves

 $\textsf{Consider}~ (C, p_1, \ldots, p_n)$ with $H^1(C, \mathcal{O}(p_i)) = 0$ for each *i*, as in Example 2. Fix a nonzero global section $\omega \in H^0(C,\omega_C).$ Assume $n\geq 3.$ For $i\neq j,$ there is $h_{ij}\in H^0(\mathit{C},\mathcal{O}(p_i+p_j)),$ unique up to adding a constant, such that $\mathsf{Res}_{\rho_i} \, h_{ij} \omega) = 1,$ $\mathsf{Res}_{\rho_j} \, h_{ij} \omega) = -1.$ Normalize h_{12} and h_{13} by $h_{12}(p_3) = 0$, $h_{13}(p_2) = 0$. Then the algebra $\mathcal{O}(C \setminus \{p_1, \ldots, p_n\})$ is generated by

 $x_2 = h_1, \ldots, x_n = h_{1n}$, with defining relations

$$
x_i x_j = x_2 x_3 + c_{ij} x_j + c_{ji} x_i + d_{ij},
$$

$$
x_2 x_3^2 = x_2^2 x_3 + a x_2 x_3 + b x_2 + c x_3 + d,
$$

where $c_{ii} = h_{1i}(x_i)$.

The (normalized) coefficients become (weighted) projective coordinates on the moduli space. For *n* ≥ 5 all coordinates are expressed in terms of *cij* and *a* (which have weight 1). One can write explicitly defining equations between them.

Case $g = 1$: Strongly non-special curves

 $\textsf{Consider}~ (C, p_1, \ldots, p_n)$ with $H^1(C, \mathcal{O}(p_i)) = 0$ for each *i*, as in Example 2. Fix a nonzero global section $\omega \in H^0(C,\omega_C).$ Assume $n\geq 3.$ For $i\neq j,$ there is $h_{ij}\in H^0(\mathit{C},\mathcal{O}(p_i+p_j)),$ unique up to adding a constant, such that $\mathsf{Res}_{\rho_i} \, h_{ij} \omega) = 1,$ $\mathsf{Res}_{\rho_j} \, h_{ij} \omega) = -1.$ Normalize h_{12} and h_{13} by $h_{12}(p_3) = 0$, $h_{13}(p_2) = 0$. Then the algebra $\mathcal{O}(C \setminus \{p_1, \ldots, p_n\})$ is generated by $x_2 = h_{12}, \ldots, x_n = h_{1n}$, with defining relations $x_i x_j = x_2 x_3 + c_{ij} x_j + c_{ji} x_j + d_{ij}$ $x_2x_3^2 = x_2^2x_3 + ax_2x_3 + bx_2 + cx_3 + d$, where $c_{ij} = h_{1i}(x_i)$.

The (normalized) coefficients become (weighted) projective coordinates on the moduli space. For *n* ≥ 5 all coordinates are expressed in terms of *cij* and *a* (which have weight 1). One can write explicitly defining equations between them.

Case $g = 1$: Strongly non-special curves

 $\textsf{Consider}~ (C, p_1, \ldots, p_n)$ with $H^1(C, \mathcal{O}(p_i)) = 0$ for each *i*, as in Example 2. Fix a nonzero global section $\omega \in H^0(C,\omega_C).$ Assume $n\geq 3.$ For $i\neq j,$ there is $h_{ij}\in H^0(\mathit{C},\mathcal{O}(p_i+p_j)),$ unique up to adding a constant, such that $\mathsf{Res}_{\rho_i} \, h_{ij} \omega) = 1,$ $\mathsf{Res}_{\rho_j} \, h_{ij} \omega) = -1.$ Normalize h_{12} and h_{13} by $h_{12}(p_3) = 0$, $h_{13}(p_2) = 0$. Then the algebra $\mathcal{O}(C \setminus \{p_1, \ldots, p_n\})$ is generated by $x_2 = h_{12}, \ldots, x_n = h_{1n}$, with defining relations $x_i x_i = x_2 x_3 + c_{ii} x_i + c_{ii} x_i + d_{ii}$ $x_2x_3^2 = x_2^2x_3 + ax_2x_3 + bx_2 + cx_3 + d$, where $c_{ii} = h_{1i}(x_i)$.

The (normalized) coefficients become (weighted) projective coordinates on the moduli space. For *n* ≥ 5 all coordinates are expressed in terms of *cij* and *a* (which have weight 1). One can write explicitly defining equations between them.

Case $n = g$

Set $D = p_1 + \ldots + p_q$. Then for each *i* there exist $x_i \in H^0(C, \mathcal{O}(D + \rho_i)), \, y_i \in H^0(C, \mathcal{O}(D + 2 \rho_i))$ such that

$$
x_i = \frac{1}{t_i^2} + \dots
$$
, $y_i = \frac{1}{t_i^3} + \dots$

at $\rho_i.$ The algebra $\mathcal{O}(\bm{\mathcal{C}} \setminus \bm{\mathit{D}})$ is generated by $(X_1, \ldots, X_a, V_1, \ldots, V_a).$

Using the ambiguity $x_i \mapsto x + a_i$, $y_i \mapsto y_i + b_i x_i + c_i$, we can choose *xⁱ* and *yⁱ* uniquely so that

$$
y_i^2 - x_i^3 \in H^0(C, \mathcal{O}(3D)), \quad x_i(y_i^2 - x_i^3) \in H^0(C, \mathcal{O}(4D)).
$$

Note that $(x_i^n, y_i x_i^n)$ is a basis of $\mathcal{O}(C \setminus D)$.

Case $n = g$

Set $D = p_1 + \ldots + p_q$. Then for each *i* there exist $x_i \in H^0(C, \mathcal{O}(D + \rho_i)), \, y_i \in H^0(C, \mathcal{O}(D + 2 \rho_i))$ such that

$$
x_i = \frac{1}{t_i^2} + \dots
$$
, $y_i = \frac{1}{t_i^3} + \dots$

at $\rho_i.$ The algebra $\mathcal{O}(\bm{\mathcal{C}} \setminus \bm{\mathit{D}})$ is generated by $(X_1, \ldots, X_a, V_1, \ldots, V_a).$

Using the ambiguity $x_i \mapsto x + a_i$, $y_i \mapsto y_i + b_i x_i + c_i$, we can choose *xⁱ* and *yⁱ* uniquely so that

$$
y_i^2 - x_i^3 \in H^0(C, \mathcal{O}(3D)), \ \ x_i(y_i^2 - x_i^3) \in H^0(C, \mathcal{O}(4D)).
$$

Note that $(x_i^n, y_i x_i^n)$ is a basis of $\mathcal{O}(C \setminus D)$.

Case $n = g$

Set $D = p_1 + \ldots + p_q$. Then for each *i* there exist $x_i \in H^0(C, \mathcal{O}(D + \rho_i)), \, y_i \in H^0(C, \mathcal{O}(D + 2 \rho_i))$ such that

$$
x_i = \frac{1}{t_i^2} + \dots
$$
, $y_i = \frac{1}{t_i^3} + \dots$

at $\rho_i.$ The algebra $\mathcal{O}(\bm{\mathcal{C}} \setminus \bm{\mathit{D}})$ is generated by $(X_1, \ldots, X_a, V_1, \ldots, V_a).$

Using the ambiguity $x_i \mapsto x + a_i$, $y_i \mapsto y_i + b_i x_i + c_i$, we can choose *xⁱ* and *yⁱ* uniquely so that

$$
y_i^2 - x_i^3 \in H^0(C, \mathcal{O}(3D)), \ \ x_i(y_i^2 - x_i^3) \in H^0(C, \mathcal{O}(4D)).
$$

Note that $(x_i^n, y_i x_i^n)$ is a basis of $\mathcal{O}(C \setminus D)$.

Case $n = g \geq 2$: equations of the universal curve

$$
x_i x_j = \alpha_{jj} y_i + \alpha_{ij} y_j + \gamma_{ji} x_i + \gamma_{ij} x_j + \sum_{k \neq i,j} c_{ij}^k x_k + a_{ij},
$$

\n
$$
x_i y_j = \alpha_{ij} x_j^2 + \beta_{ji} y_i + \gamma_{ij} y_j + r_{ji} x_i + \delta_{ij} x_j + \sum_{k \neq i,j} e_{ij}^k x_k + b_{ij},
$$

\n
$$
y_i y_j = \beta_{ji} x_i^2 + \beta_{ij} x_j^2 + \varepsilon_{ji} y_j + \varepsilon_{ij} y_j + \psi_{ji} x_i + \psi_{ij} x_j + \sum_{k \neq i,j} l_{ij}^k x_k + u_{ij},
$$

\n
$$
y_i^2 = x_i^3 + p_i x_i + \sum_{j \neq i} g_j^j y_j + \sum_{j \neq i} k_i^j x_j + q_i,
$$

where *i* and *j* are distinct.

Using Gröbner basis technique find:

$$
c_{ij}^k = \alpha_{ik}\alpha_{jk},
$$

\n
$$
g_i^j = -\alpha_{ij}^3,
$$

\n
$$
r_{ji} = \varepsilon_{ji} - \alpha_{ij}\alpha_{ji}^2,
$$

etc., so that all the coefficients are expressed in terms of $(\alpha_{ij}, \beta_{ij}, \gamma_{ij}, \varepsilon_{ij}, p_i)$. These coordinates satisfy further equations, and $\widetilde{\mathcal{U}}_{g,g}^{ns}$ is the corresponding affine scheme.

Case $n = g \geq 2$: equations of the universal curve

$$
x_i x_j = \alpha_{ji} y_i + \alpha_{ij} y_j + \gamma_{ji} x_i + \gamma_{ij} x_j + \sum_{k \neq i,j} c_{ij}^k x_k + a_{ij},
$$

\n
$$
x_i y_j = \alpha_{ij} x_i^2 + \beta_{ji} y_i + \gamma_{ij} y_j + r_{ji} x_i + \delta_{ij} x_j + \sum_{k \neq i,j} e_{ij}^k x_k + b_{ij},
$$

\n
$$
y_i y_j = \beta_{ji} x_i^2 + \beta_{ij} x_j^2 + \varepsilon_{ji} y_i + \varepsilon_{ij} y_j + \psi_{ji} x_i + \psi_{ij} x_j + \sum_{k \neq i,j} l_{ij}^k x_k + u_{ij},
$$

\n
$$
y_i^2 = x_i^3 + p_i x_i + \sum_{j \neq i} g_i^j y_j + \sum_{j \neq i} k_i^j x_j + q_i,
$$

where *i* and *j* are distinct.

Using Gröbner basis technique find:

$$
c_{ij}^k = \alpha_{ik}\alpha_{jk},
$$

\n
$$
g_i^j = -\alpha_{ij}^3,
$$

\n
$$
r_{ji} = \varepsilon_{ji} - \alpha_{ij}\alpha_{ji}^2,
$$

etc., so that all the coefficients are expressed in terms of $(\alpha_{ij}, \beta_{ij}, \gamma_{ij}, \varepsilon_{ij}, \rho_i)$. These coordinates satisfy further equations, and $\widetilde{\mathcal{U}}_{g,g}^{ns}$ is the corresponding affine scheme.

GIT-stability condition depends on a character

 $\chi(\lambda) = (a_1, \ldots, a_n)$ of $(\mathbb{C}^*)^n$.

All GIT-quotients are projective, empty unless (a_1, \ldots, a_n) belongs to the cone generated by $(2e_i - e_i)$.

Wall structure in \mathbb{R}^n : the codim-1 walls are cones spanned by subsets of (2*eⁱ* − *e^j* , 3*eⁱ* − *e^j* , *ei*).

Main chamber $C_0: a_1 > 0, ..., a_n > 0$. For $\chi \in \mathbf{C}_0$ every $(C, p_1, \ldots, p_\alpha)$ with smooth *C* is χ -stable.

GIT-stability condition depends on a character $\chi(\lambda) = (a_1, \ldots, a_n)$ of $(\mathbb{C}^*)^n$. All GIT-quotients are projective, empty unless (a_1, \ldots, a_n) belongs to the cone generated by $(2e_i - e_i)$. Wall structure in \mathbb{R}^n : the codim-1 walls are cones spanned by subsets of $(2e_i - e_j, 3e_i - e_j, e_i)$.

Main chamber $C_0: a_1 > 0, ..., a_n > 0$. For $\chi \in \mathbf{C}_0$ every (C, p_1, \ldots, p_q) with smooth *C* is χ -stable.

GIT-stability condition depends on a character

 $\chi(\lambda) = (a_1, \ldots, a_n)$ of $(\mathbb{C}^*)^n$.

All GIT-quotients are projective, empty unless (a_1, \ldots, a_n) belongs to the cone generated by $(2e_i - e_i)$. Wall structure in \mathbb{R}^n : the codim-1 walls are cones spanned by

subsets of $(2e_i - e_j, 3e_i - e_j, e_i)$.

Main chamber $C_0: a_1 > 0, ..., a_n > 0$. For $\chi \in \mathbf{C}_0$ every (C, p_1, \ldots, p_q) with smooth *C* is χ -stable.

GIT-stability condition depends on a character

 $\chi(\lambda) = (a_1, \ldots, a_n)$ of $(\mathbb{C}^*)^n$.

All GIT-quotients are projective, empty unless (a_1, \ldots, a_n) belongs to the cone generated by $(2e_i - e_i)$. Wall structure in \mathbb{R}^n : the codim-1 walls are cones spanned by

subsets of $(2e_i - e_j, 3e_i - e_j, e_i)$.

Main chamber $C_0: a_1 > 0, ..., a_n > 0$. For $\chi \in \mathbf{C}_0$ every (C, p_1, \ldots, p_q) with smooth *C* is χ -stable.

Moduli of *A*∞-structures

Recall that an *A*∞-algebra is a graded vector space *A* with operations *mⁿ* : *A* [⊗]*ⁿ* → *A* of degree 2 − *n*, for *n* ≥ 1, satisfying \mathcal{A}_∞ -identities $\sum_{i+j=n}[m_i,m_j]=0$ (where $[\cdot,\cdot]$ is the Gerstenhaber bracket).

For a given finite-dimensional associative algebra *A* can consider all A_{∞} -structures (m_{\bullet}) on *A* with $m_1 = 0$ and m_2 the given product on *A*. These are parametrized by an infinite-dimensional affine scheme $A_{\infty}(A)$. There is a natural action of an infinite-dimensional unipotent group $\mathfrak G$ of gauge equivalences on $A_{\infty}(A)$. We consider the moduli space $\mathcal{M}_{\infty}(\mathcal{A}) = \mathcal{A}_{\infty}(\mathcal{A})/\mathfrak{G}.$

Theorem. Assume $HH^1(A)_j=0$ for $j < 0.$ Then the action of $\mathfrak G$ on $\mathcal{A}_{\infty}(A)$ admits a section, so that $\mathcal{M}_{\infty}(A)$ is an affine scheme. If in addition *HH*² (*A*)<⁰ is finite-dimensional then $\mathcal{M}_{\infty}(A)$ is of finite type. (Here *HH*[•](A) is the Hochschild cohomology.)

Moduli of *A*∞-structures

Recall that an *A*∞-algebra is a graded vector space *A* with operations *mⁿ* : *A* [⊗]*ⁿ* → *A* of degree 2 − *n*, for *n* ≥ 1, satisfying \mathcal{A}_∞ -identities $\sum_{i+j=n}[m_i,m_j]=0$ (where $[\cdot,\cdot]$ is the Gerstenhaber bracket).

For a given finite-dimensional associative algebra *A* can consider all A_{∞} -structures (m_{\bullet}) on *A* with $m_1 = 0$ and m_2 the given product on *A*. These are parametrized by an infinite-dimensional affine scheme $A_{\infty}(A)$. There is a natural action of an infinite-dimensional unipotent group $\mathfrak G$ of gauge equivalences on $A_{\infty}(A)$. We consider the moduli space $\mathcal{M}_{\infty}(\mathcal{A}) = \mathcal{A}_{\infty}(\mathcal{A})/\mathfrak{G}.$

Theorem. Assume $HH^1(A)_j=0$ for $j < 0.$ Then the action of $\mathfrak G$ on $\mathcal{A}_{\infty}(A)$ admits a section, so that $\mathcal{M}_{\infty}(A)$ is an affine scheme. If in addition *HH*² (*A*)<⁰ is finite-dimensional then $\mathcal{M}_{\infty}(A)$ is of finite type. (Here *HH*[•](A) is the Hochschild cohomology.)

Moduli of *A*∞-structures

Recall that an *A*∞-algebra is a graded vector space *A* with operations *mⁿ* : *A* [⊗]*ⁿ* → *A* of degree 2 − *n*, for *n* ≥ 1, satisfying \mathcal{A}_∞ -identities $\sum_{i+j=n}[m_i,m_j]=0$ (where $[\cdot,\cdot]$ is the Gerstenhaber bracket).

For a given finite-dimensional associative algebra *A* can consider all A_{∞} -structures (m_{\bullet}) on A with $m_1 = 0$ and m_2 the given product on *A*. These are parametrized by an infinite-dimensional affine scheme $A_{\infty}(A)$. There is a natural action of an infinite-dimensional unipotent group $\mathfrak G$ of gauge equivalences on $A_{\infty}(A)$. We consider the moduli space $\mathcal{M}_{\infty}(\mathcal{A}) = \mathcal{A}_{\infty}(\mathcal{A})/\mathfrak{G}.$

Theorem. Assume $HH^1(A)_j = 0$ for $j < 0$. Then the action of $\mathfrak G$ on $A_{\infty}(A)$ admits a section, so that $\mathcal{M}_{\infty}(A)$ is an affine scheme. If in addition *HH*² (*A*)<⁰ is finite-dimensional then $\mathcal{M}_{\infty}(A)$ is of finite type. (Here *HH*[•](A) is the Hochschild cohomology.)

Given a curve (C, p_1, \ldots, p_g) such that $H^1(\mathcal{O}(p_1 + \ldots + p_g)) = 0$ $\mathsf{consider}\ \mathsf{the}\ \mathsf{algebra}\ E=\mathsf{Ext}^*(G,G),$ where

$$
G=\mathcal{O}_C\oplus \mathcal{O}_{p_1}\oplus \ldots \oplus \mathcal{O}_{p_g}.
$$

Generators: $A_i \in \mathsf{Hom}(\mathcal{O}_C, \mathcal{O}_{\rho_i}),$ $B_i \in \mathsf{Ext}^1(\mathcal{O}_{\rho_i}, \mathcal{O}_C).$ Note that the classes B_1A_1, \ldots, B_qA_q form a basis of $Ext^1(\mathcal{O}_C, \mathcal{O}_C) = H^1(C, \mathcal{O}).$

A choice of nonzero tangent vectors at *p*1, . . . , *pⁿ* gives an isomorphism of *E* with the fixed algebra *Eg*. By homological perturbation, for each curve (C, p_1, \ldots, p_n) there is a canonical gauge equivalence class of *A*∞-structures on *Eg*. Theorem. This defines an isomorphism $\widetilde{\mathcal{U}}_{g, g}^{ns} \simeq \mathcal{M}_{\infty}(\mathit{E}_{g}).$ Remark. There is a similar interpretation of $\widetilde{\mathcal{U}}_{g,n}^{ns}$ for $n > g$ as moduli of A_{∞} -structures. In this case m_2 is also allowed to vary.

Given a curve (C, p_1, \ldots, p_g) such that $H^1(\mathcal{O}(p_1 + \ldots + p_g)) = 0$ $\mathsf{consider}\ \mathsf{the}\ \mathsf{algebra}\ E=\mathsf{Ext}^*(G,G),$ where

$$
G=\mathcal{O}_C\oplus \mathcal{O}_{p_1}\oplus \ldots \oplus \mathcal{O}_{p_g}.
$$

Generators: $A_i \in \mathsf{Hom}(\mathcal{O}_C, \mathcal{O}_{\rho_i}),$ $B_i \in \mathsf{Ext}^1(\mathcal{O}_{\rho_i}, \mathcal{O}_C).$ Note that the classes B_1A_1, \ldots, B_qA_q form a basis of $Ext^1(\mathcal{O}_C, \mathcal{O}_C) = H^1(C, \mathcal{O}).$

A choice of nonzero tangent vectors at p_1, \ldots, p_n gives an isomorphism of *E* with the fixed algebra *Eg*. By homological perturbation, for each curve (C, p_1, \ldots, p_n) there is a canonical gauge equivalence class of *A*∞-structures on *Eg*.

Theorem. This defines an isomorphism $\widetilde{\mathcal{U}}_{g, g}^{ns} \simeq \mathcal{M}_{\infty}(\mathit{E}_{g}).$ Remark. There is a similar interpretation of $\widetilde{\mathcal{U}}_{g,n}^{ns}$ for $n > g$ as moduli of A_{∞} -structures. In this case m_2 is also allowed to vary.

Given a curve (C, p_1, \ldots, p_g) such that $H^1(\mathcal{O}(p_1 + \ldots + p_g)) = 0$ $\mathsf{consider}\ \mathsf{the}\ \mathsf{algebra}\ E=\mathsf{Ext}^*(G,G),$ where

$$
G=\mathcal{O}_C\oplus \mathcal{O}_{p_1}\oplus \ldots \oplus \mathcal{O}_{p_g}.
$$

Generators: $A_i \in \mathsf{Hom}(\mathcal{O}_C, \mathcal{O}_{\rho_i}),$ $B_i \in \mathsf{Ext}^1(\mathcal{O}_{\rho_i}, \mathcal{O}_C).$ Note that the classes B_1A_1, \ldots, B_dA_d form a basis of $Ext^1(\mathcal{O}_C, \mathcal{O}_C) = H^1(C, \mathcal{O}).$

A choice of nonzero tangent vectors at p_1, \ldots, p_n gives an isomorphism of *E* with the fixed algebra *Eg*. By homological perturbation, for each curve (C, p_1, \ldots, p_n) there is a canonical gauge equivalence class of *A*∞-structures on *Eg*.

Theorem. This defines an isomorphism $\widetilde{\mathcal{U}}^{ns}_{g, g} \simeq \mathcal{M}_{\infty}(\mathsf{E}_g).$

Remark. There is a similar interpretation of $\widetilde{\mathcal{U}}_{g,n}^{ns}$ for $n > g$ as moduli of A_{∞} -structures. In this case m_2 is also allowed to vary.

Given a curve (C, p_1, \ldots, p_g) such that $H^1(\mathcal{O}(p_1 + \ldots + p_g)) = 0$ $\mathsf{consider}\ \mathsf{the}\ \mathsf{algebra}\ E=\mathsf{Ext}^*(G,G),$ where

$$
G=\mathcal{O}_C\oplus \mathcal{O}_{p_1}\oplus \ldots \oplus \mathcal{O}_{p_g}.
$$

Generators: $A_i \in \mathsf{Hom}(\mathcal{O}_C, \mathcal{O}_{\rho_i}),$ $B_i \in \mathsf{Ext}^1(\mathcal{O}_{\rho_i}, \mathcal{O}_C).$ Note that the classes B_1A_1, \ldots, B_dA_d form a basis of $Ext^1(\mathcal{O}_C, \mathcal{O}_C) = H^1(C, \mathcal{O}).$

A choice of nonzero tangent vectors at p_1, \ldots, p_n gives an isomorphism of *E* with the fixed algebra *Eg*. By homological perturbation, for each curve (C, p_1, \ldots, p_n) there is a canonical gauge equivalence class of *A*∞-structures on *Eg*. Theorem. This defines an isomorphism $\widetilde{\mathcal{U}}^{ns}_{g, g} \simeq \mathcal{M}_{\infty}(\mathsf{E}_g).$ Remark. There is a similar interpretation of $\widetilde{\mathcal{U}}_{g,n}^{ns}$ for $n > g$ as

moduli of A_{∞} -structures. In this case m_2 is also allowed to vary.

References

arXiv:1312.4636 (case *n* = *g*)

[P-Lekili] arXiv:1408.0611 (case $g = 1$, strongly non-special curves)

arXiv:1511.03797 (general case)

arXiv:1603.01238 (case $q = 1$, GIT stabilities)