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3 Introduction to Higgs bundles and connections

Let C be a smooth projective curve, KC canonical bundle, E and V be
holomorphic rank r vector bundle on C.

Definition
A holomorphic Higgs bundle is a pair (E , φ) where φ : E → E ⊗KC
is a OC-module homomorphism ie φ(sf ) = fφ(s), ∀f ∈ OC , s ∈ E .
A connection is a pair (V ,∇), ∇ : V → V ⊗ KC is a
C-homomorphism st ∇(fs) = df · s + f · ∇(s), ∀f ∈ OC , s ∈ V .

Example (rank two Higgs filed examples)

(K
1
2

C ⊕ K
− 1

2
C ,

(
0 q
1 0

)
) and (OC ⊕OC ,

(
0 P(x)dx

P(x)dx 0

)
) for

q = P(x)2(dx)2 ∈ H0(C,K 2
C).

Locally on C, ∇|U = d + A|U where A : V → V ⊗ KC .

If {fαβ}, {gαβ} are transition functions for E and V respectively
then φα = fαβφβf−1

αβ while Aα = gαβAβg−1
αβ − g−1

αβ dgαβ.



4 Higgs bundles and quantum curves

Let C be a smooth projective curve of arbitrary genus, KC canonical
bundle. Let E a holomorphic rank 2 vector bundle on C.
For φ : E → E ⊗ KC(∗), the pair (E , φ) Higgs bundle of rank 2.

In [DM ’13] φ is holomorphic, Hitchin constructed Σ ↪→ T ∗C

In [DM ’14] φ is meromorphic

Σ̃
i−−−−→ BlT ∗Cy yblow−up

Σ −−−−→
i

T ∗C

Theorem (D-Mulase ’13, ’14)
For rank 2 Higgs bundle (E , φ) and x ∈ C. Locally, we construct a 2nd
order differential operator P(x , ~d/dx) whose semi-classical limit
recovers Σ, s.t. P(x , ~d/dx)ψ(x , ~) = 0.
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7 Quantization of Airy function

Airy curve ≡ local spectral curve of a Higgs bundle

The curve C = P1, the vector bundle E = K
1
2

C ⊕ K
− 1

2
C

The meromorphic Higgs field φ : E → E ⊗ KC(∗) is locally

φ =

(
0 x(dx)2

1 0

)
Σ, the spectral curve of φ inside T ∗P1 = F2 is locally at the (0,0) chart

det(φ− (ydx)I2) = (y2 − x)(dx)2 = 0

with a quintic cusp at (∞,∞) chart: u2 = w5

The spectral curve Σ→ C = P1 double cover.
Take a resolution of singularity of curve Σ by blowing up F2.
The proper transform Σ̃ of Σ becomes a rational curve.



7 Quantization of Airy function

Airy curve ≡ local spectral curve of a Higgs bundle

The curve C = P1, the vector bundle E = K
1
2

C ⊕ K
− 1

2
C

The meromorphic Higgs field φ : E → E ⊗ KC(∗) is locally

φ =

(
0 x(dx)2

1 0

)
Σ, the spectral curve of φ inside T ∗P1 = F2 is locally at the (0,0) chart

det(φ− (ydx)I2) = (y2 − x)(dx)2 = 0

with a quintic cusp at (∞,∞) chart: u2 = w5

The spectral curve Σ→ C = P1 double cover.
Take a resolution of singularity of curve Σ by blowing up F2.
The proper transform Σ̃ of Σ becomes a rational curve.



8 Quantization of Airy function

Geometry of the Airy function
The Airy differential equation = the simplest quantum curve(

~2 d2

dx2 − x
)

Ai(x , ~) = 0.

Ai(x , ~) :=
1

2
√
π

exp

 ∞∑
2g−2+n≥−1

1
n!

~2g−2+nFg,n(x)


Fg,n(x) satisfy recursion, which can be solved

Fg,n(x) =
(−1)n

22g−2+n x−
6g−6+3n

2
∑

d1+···+dn
=3g−3+n

〈τd1 · · · τdn〉
n∏

i=1

(2di − 1)!!

〈τd1 · · · τdn〉 :=

∫
Mg,n

c1(L1)d1 · · · c1(Ln)dn
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9 The methamorphosis of quantum curves into opers

Projective coordinate system
Let C be a Riemann surface of genus at least two. Its universal
covering is the upper half-plane

H = {z ∈ C|Imz > 0}

The global coordinate on H induces by the quotient map H→ C
a particular coordinate system on the Riemann surface C.

Definition (Gunning 1967)
A projective coordinate system on C is a coordinate system on which
transition function is given by Möbius transformation.

C =
⋃
α

Uα, zα ∈ Uα, zα =
aαβzβ + bαβ
cαβzβ + dαβ

,

[
aαβ bαβ
cαβ dαβ

]
∈ SL(2,R).

Note dzα =
dzβ

(cαβzβ+dαβ)2 so K
1
2

C is given by ζαβ = ±(cαβzβ + dαβ).
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10 The methamorphosis of quantum curves into opers

Importance of Gunning’s definition:
On a projective coordinate system of Σ, the DM-quantum curve is
globally defined!

Definition (intuitive)
An oper, ∇oper , is a globally defined differential operator.

The quantum curve P(x , ~d/dx)|~=1 is an oper. Interpret globally

P(x ,d/dx)ψ = 0 as ∇oper
[
ψ
ψ′

]
= 0

Example: The quantum curve of the Higgs field E = K
1
2

C ⊕ K
− 1

2
C ,

φ =

(
0 x(dx)2

1 0

)
is
(
~2 d2

dx2 − x
)

Ai(x , ~) = 0. It corresponds to a

family of opers ∇~ = d + 1
~

(
0 x(dx)

dx 0

)
. What is the corresponding

vector bundle for this family of connections

(?,∇~)?
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11 The methamorphosis of quantum curves into opers

Interpret ~ ∈ C = Ext1(K
− 1

2
C ,K

1
2

C ).

Theorem (Gunning)
For any ~ ∈ C, ∃! rank 2 vector bundle, V~, such that

0→ K
1
2

C → V~ → K
− 1

2
C

→ 0

proof: V~ is given by transition fn {f ~αβ}, f ~αβ :=

(
ζαβ ~ · dζαβ

dzβ
0 ζ−1

αβ

)
V0
∼= K

1
2

C ⊕ K
− 1

2
C

For ~ 6= 0 the vector bundles V~ and their complex structure are
isomorphic. Denote V := V~|~=1.
Gunning: H0(C,K 2

C) ∼= {moduli space of pairs (V ,∇oper )}
0 ↔ ∇unif = origin

(K
1
2

C ⊕ K
− 1

2
C ,

[
0 P(x)(dx)2

1 0

]
)

DM→ (V~,d + 1
~

[
0 P(x)dx

dx 0

]
)

DM-quantum curve ~∇~ is an ~− deformation family
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12 General theory of Hitchin systems for the Lie group G = SLr (C)

E ,V be a holomorphic vector bundles of rank r of degree 0
φ : E → E ⊗ KC a traceless holomorphic Higgs field.
∇ : V → V ⊗ KC an irreducible holomorphic connection.

MDol := {moduli space of rank r stable Higgs bundles (E , φ)}

↓ [Hitchin-Simpson]

MdeR := {moduli space of rank r irreducible connections (V ,∇)}

↓ [Riemann-Hilbert]

MB := Hom(π1(C),G) � G,G = SLr (C)

Let η tautological 1-form on T ∗C. The Spectral curve of φ is

det(φ− η · Ir ) = 0 ⊂ T ∗C

MDol is a fibration of abelian varieties, by the Hitchin map
MDol 3 (E ,Φ)yH

B :=⊕r
i=2H0(C,K i

C) 3 ((−1)i tr(∧iφ))
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13 General theory of Hitchin systems for the Lie group G = SLr (C)

Hitchin component in rank two

Fix a spin structure for C, a line bundle L for which L⊗2 ∼= KC .
Let ζαβ be the transition functions for the line bundle L.

Hitchin map is just (E , φ)
H→ det(φ). Let q ∈ B = H0(C,K 2

C).

The Hitchin section is s(q) = (E0 := K
1
2

C ⊕ K
− 1

2
C , φ(q) :=

[
0 q
1 0

]
)



14 General theory of Hitchin systems for the Lie group G = SLr (C)

Hitchin component (principal sl2(C))
Let q := (q1, . . . ,qr−1) ∈ B = ⊕r−1

i=1 H0(C,K i+1
C ). Denote pi := i(r − i).

X+ :=


0
√

p1 0 . . . 0
0 0

√
p2 . . . 0

0 0 0 . . .
√

pn−1
0 0 0 . . . 0

, X− := X t
+,

H :=


r − 1 0 . . . 0 0

0 r − 3 . . . 0 0
0 0 . . . −(r − 3) 0
0 0 . . . 0 −(r − 1)

 .
Let E0 := K

r−1
2

C ⊕ K
r−1

2 −1
C ⊕ . . .⊕ K

− r−1
2

C with transition functions
{ζH
αβ = exp(H · logζαβ)}.

Hitchin section

For any q ∈ B, the Higgs pair (E0, φ(q) := X− +
∑r−1

i=1 qiX i
+) ∈MDol



15 General theory of Hitchin systems for the Lie group G = SLr (C)

A stable holomorphic Higgs bundle (E , φ) corresponds to (D, φ,h)

h is a hermitian metric, D an h-unitary connection

D = D(1,0) + D(0,1)

FD is the curvature, 2FD = [D,D]

φ†h is the adjoint of φ with respect to h

satisfying Hitchin’s equations, a nonlinear system of PDE

FD + [φ, φ†h ] = 0 (1)
∂̄Dφ = 0. (2)

This is equivalent to the flatness of a family of connections, ζ ∈ C∗

D(ζ) :=
1
ζ
φ+ D + ζφ†h

(E , φ)
NAH−→ (V ,∇ := D(1)(1,0)),V = (E ,D(1)(0,1))
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16 General theory of Hitchin systems for the Lie group G = SLr (C)

Gaiotto’s conjecture
Take (E0, φ(q)) on the Hitchin section and twist by R ∈ R+,
(E0,Rφ(q)) ∈MDol

FD + R2[φ, φ†h ] = 0, (3)
∂̄Dφ = 0. (4)

where R ∈ R. The solution to Hitchin’s equations corresponds to family
of flat connections on a topologically trivial bundle, ζ ∈ C∗ and R > 0.

D(ζ,R) := ζ−1Rφ+ D + ζRφ†.

D. Gaiotto predicted in 2014
For a Higgs bundle on a Hitchin section limR,ζ→0, ζR =~ D(ζ,R) exists
and is an oper.

We recall: in rank 2 oper is (V ,∇) with 0→ K
1
2

C → V → K
− 1

2
C → 0.
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17 Opers

Definition (Beilinson-Drinfeld, 1993)
Let V be a holomorphic vector bundle of rank r . An SLr (C)-oper is a
pair (V ,∇) with a filtration st

1 0 = Fr ↪→ Fr−1 ↪→ . . . ↪→ F0 = V
2 ∇|Fi+1 : Fi+1 → Fi ⊗ KC Griffiths transversality.
3 Fi+1/Fi+2

∼= Fi/Fi+1 ⊗ KC an OC linear isomorphism.

The following hold:

There is a unique filtration and vector bundle V~ with Fr−1 = K
r−1

2
C .

V~ is given by {f ~αβ} where f ~αβ = exp(H · logζαβ)exp(~dlogζαβ
dzβ

· X+)

V0 = K
r−1

2
C ⊕ . . .⊕ K

− r−1
2

C , since f ~=0
αβ = exp(H · logζαβ) = ζH

αβ.
For ~ 6= 0 the vector bundles V~ and their complex structures are
isomorphic. Let V1 := V~|~=1.

Let ∇~
α|Uα := d + 1

~φ(q)|Uα . Then (V~,∇~) is a family of opers.



18 Opers

Gaiotto’s conjecture holds

Theorem [D, Fredrickson, Kydonakis, Mazzeo, Mulase, Neitzke]
For an arbitrary simple and simply connected Lie group G
limR,ζ→0, ζR =~ D(ζ,R) exists and is the oper (V~,∇~).

for rank 2
The limit oper is d + 1

~φ(q) i.e. DM quantum curve of Topological
Recursion.

[Hitchin, Simpson] Nonabelian-Hodge correspondence

MDol
diffeomorphism−→ MdeR

[Gaiotto’s conjecture] holomorphic corresp. between Lagrangians

Hitchin Component
holomorphic−→ moduli space of opers
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19 Opers

sketch of the proof in rank two
The hermitian metric on the vector bundle of the Hitchin

component V0 = K
1
2

C ⊕ K
− 1

2
C is given by h =

[
λ−1 0
0 λ

]
the Chern connection D = d − ∂logλ ·

[
1 0
0 −1

]
If φ =

[
0 P
1 0

]
dz then φ†h = h · φt · h−1 =

[
0 λ2

λ−2P 0

]
dz̄

The flatness condition of D(ζ,R) gives

∂∂̄logλ− R2(λ−2PP − λ2) = 0

For P = 0, ie φ = X−, solving the harmonicity equation for λ one
obtains on H

λ0 =
1
R
· i

z − z

In general λ = λ0 · ef (R) analysis proves f is real analytic with
f (R) = R4 + HOT .



20 Opers

Non-Abelian Hodge

Gaiotto Correspondence = Canonical Biholomorphic Map

Hitchin Section Oper Moduli

Stable
Bundles

SL  (R)

SU

(E  , X  )0 -
 

(V  , d + X  )1 -

Moduli of Higgs Bundles Moduli of Holomorphic
         Connections

quantization

semi-classical limit

Diffeomorphism Hitchin Component

Narasimhan
Seshadri

(C, K    ) ChosenC
1/2

r

r
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Thank you for your attention!
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Geometry and Physics
In Physics: Higgs fields make massless particles massive.

Figure: Peter Higgs, University of Edinburgh and Nigel Hitchin,
University of Oxford

In Mathematics: Higgs fields promote massive interactions
between different fields and collaborations.
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