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Moonshine is a fascinating connection between 2 mathematical
objects:

Finite groups

Modular forms,

which has connections to many other areas of mathematics and
string theory.
These connections are still in the process of being uncovered and
explored.
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Today I will focus on connections with sigma models coming from
string theory compactified on K3 surfaces.

These probe geometry in interesting way and have interesting
connections with lattice theory, number theory, modular forms, and
group theory
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Elliptic genus

The elliptic genus of a N=(2,2) 2d CFT is also a useful object
in string theory as it is a protected character which counts
BPS states

EG(τ, z) = trRR(−1)FL+FRyJ0qL0−c/24q̄L0−c̄/24

where FL,FR are left- and right-moving Fermion number
L0, J0 are the zero modes of Virasoro and U(1) R-currents
which make up the N=2 superconformal algebra.

For CFTs with a discrete symmetry g , we will also consider
the twining genus:

EGg (τ, z) = trRR g(−1)FL+FRyJ0qL0−c/24q̄L0−c̄/24
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Mathieu moonshine

Eguchi-Ooguri-Tachikawa, K3 elliptic genus:

expand this function in N=4 superconformal characters

(Sums of) dimensions of irreducible representations 
of the largest Mathieu group M24!
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Rewriting the K3 elliptic genus in terms of these characters, we arrive at the following specific
expression for the weak Jacobi form Z(τ, z) [26, 10, 30]
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where a, b ∈ Z and tn ∈ Z for all positive integers n, and the tn count the number of non-
supersymmetric representations with h = n + 1/4 which contribute to the elliptic genus. As the
notation suggests, from (3.4) we can compute the above integers to be a = 24, b = −2, and the first
few tn’s are indeed as we have seen in the last section

2 × 45, 2 × 231, 2 × 770, 2 × 2277, 2 × 5796, . . .

In other words, the mock modular form H(τ) (cf. (2.4)) can be interpreted as the generating
function of multiplicities of massive irreducible representations of the N = 4 superconformal algebra
in the K3 elliptic genus.

In this context, the origin of the mock modularity of H(τ) can be understood in the following
way. From the fact that the elliptic genus (3.6) transforms nicely under SL2(Z), so must the
combination 24µ(τ, z) + H(τ). Now, the Appell-Lerch sum itself does not transform nicely, rather
its non-holomorphic completion

µ̂(τ ; z) = µ(τ ; z) − 1

2

� ∞

−τ̄
dz

η3(−z)�
i(z + τ)

transforms like a weight 1/2 theta function. This has been demonstrated in [31] as part of a
systematic treatment of mock θ-functions. Therefore, the mock modularity of the q-series H(τ) is
directly related to the mock modularity of the massless (BPS) N = 4 characters (3.5).

In (3.6) we have seen the appearance of the infinite-dimensional M24-module K in the elliptic
genus Z(τ, z). One might wonder whether M24 acts on the other part of the decomposition as well.
A simple observation is that a = 24 is the dimension of the defining permutation representation
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Infinite tower of massive 
multiplets
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24 massless multiplets
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Monstrous moonshine

Compare with...
Why study moonshine?
Monstrous moonshine

Mathieu moonshine
Umbral moonshine and K3 surfaces

Continuing work and conclusions

J(⌧) =
1

q
+ 196884q + 21493760q2 + 864299970q3 + . . .

196884 = 1 + 196883

Dimension of smallest irreducible 
rep of monster group!!

21493760 = 1 + 196883 + 21296876

864299970 = 2 ⇥ 1 + 2 ⇥ 196883 + 21296876 + 842609326

Also monster irreps! (Thompson)
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Why study moonshine?
Monstrous moonshine

Mathieu moonshine
Umbral moonshine and K3 surfaces

Continuing work and conclusions

Symmetry
Modular forms, number theory, and (worldsheet) string theory
K3 surfaces, geometry, and (spacetime) string theory
Interplay between mathematics and physics

This brings us to modular forms. Definition: we say f : H 7! C is a
modular form of weight k if

f is holomorphic on H, in
particular as ⌧ ! i1

f

✓
a⌧ + b

c⌧ + d

◆
= (c⌧+d)k f (⌧)

for

✓
a b
c d

◆
2 SL(2, Z)

and ⌧ 2 H.

It is convenient to expand
f (q) =

P
cnq

n, q = e2⇡i⌧

Brief divertimento on modular forms

So, string theory is a natural generator of modular forms.  
Modular functions or forms are functions on
the upper half-plane defined by the property:

f(a⌧+b
c⌧+d ) = (c⌧ + d)kf(⌧)

They map the
“fundamental domain”

to the complex #s

Monday, October 14, 13

* Conventional to define via a q-expansion:

f(q) =
P

n cnqn, q = exp(2⇡i⌧)

Monday, December 9, 13

Upper half plane, H.
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Leech

Why study moonshine?
Monstrous moonshine

Mathieu moonshine
Umbral moonshine and K3 surfaces

Continuing work and conclusions

Summary:

partition function of strings
on (orbifolded)Leech lattice

modular j-function monster symmetry group
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Mathieu moonshine is a new type of moonshine where the
automorphic objects are mock modular forms.

A holomorphic function h(τ) on H is a mock modular form
[Ramanujan, Zwegers] of weight k for a discrete group Γ if it
has at most exponential growth as τ → α for any α ∈ Q and
if there exists a holomorphic modular form f (τ) of weight
2− k on Γ such that the “completion” of h given by

ĥ(τ) = h(τ) + (4i)k−1

∫ ∞

−τ̄
(z + τ)−k f (−z̄)dz

is a (non-holomorphic) modular form of weight k for Γ. The
function f is called the shadow of the mock modular form f .
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The importance of mock modular forms in physics and
mathematics has also begun to be developed. They appear
naturally in the context of

Characters of infinite-dimensional Lie superalgebras
[Eguchi-Hikami, Kac-Wakimoto,...]

Elliptic genera of CFTs with non-compact target spaces
[Ashok-Troost, Murthy,...]

Counting of black hole microstates in string theory
[Dabholkar-Murthy-Zagier,...]
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Mathieu moonshine is similar to monstrous moonshine, however
our understanding is incomplete:

Representations are governed by a mock modular form

Supersymmetry is involved in a fundamental way
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A few of many reasons why this is interesting:

K3 surfaces are important in many aspects of string theory,
from black hole solutions to AdS/CFT

Understanding the structure and symmetries of BPS states is
of great interest in both physics and mathematics (c.f. many
talks at this conference)

The subject of moonshine unites many areas of mathematics
and physics

group theory
number theory
geometry
string theory
vertex operator algebras/CFTs
and more...
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Symmetries of K3 CFTs

Moduli space of K3 CFTs has the form

M = O(Γ4,20)\O(4, 20)/O(4)× O(20)

where

O(4, 20)/O(4)× O(20) corresponds to choice of
positive-definite 4-plane Π ⊂ R4,20 specifying Ricci-flat metric
and B-field on K3

Γ4,20 even unimodular lattice of signature (4, 20)
corresponding to integral homology of K3; O(Γ4,20) its group
of automorphisms
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Symmetries of K3 CFTs

Let GΠ be group of automorphisms of a particular (non-singular)
K3 sigma model specified by Π which preserves N = (4, 4) SUSY.

GΠ is subgroup of O(Γ4,20) leaving Π fixed pointwise

Theorem (Gaberdiel-Hohenegger-Volpato): GΠ is subgroup of
Co0 := Aut(ΛLeech) which fixes pointwise a sublattice of
ΛLeech of rank at least 4

Proof: Orthogonal complement of Π in Γ4,20 has rank at most
20, and can be embedded in ΛLeech (if no roots)
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What does this mean for the EOT observation?

Symmetries of (non-singular) K3 sigma models have been classified
and are those lie within the sporadic group Co0 and preserve a
4-dimensional subspace in the 24-dimensional representation (GHV)

In particular, within Co0 are “extra” symmetries which lie outside of
M24 at non-generic, isolated points in moduli space (orbifold points)

...and within M24 are symmetries disallowed by the GHV
classification; elements which only preserve a 2-dimensional
subspace in the 24
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In the rest of the talk we will consider 2 extensions of the GHV
result:

1 Consider singular points in K3 moduli space

2 Take worldsheet parity into account

and the implications for the questions:

Which groups arise?

Which twining functions arise?

Why consider singular points?

Though the CFT is singular and may not be perturbatively
well-defined, the full 10d string theory is well-defined. These
singular points correspond to 6-dimensional theories with
enhanced non-abelian gauge symmetry, coming from massless
modes of D-branes on shrinking cycles

To make connection with a larger structure: Umbral
moonshine
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Umbral moonshine

Cheng, Duncan, Harvey (’12,’13)
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Mathieu moonshine is in fact the first example of a larger
phenomenon known as ”Umbral moonshine,” which relates certain
discrete groups arising as lattice automorphisms to mock
modular forms. (Cheng, Duncan, Harvey)
These are specified by the Niemeier lattices:

Even, unimodular, positive-definite lattices of rank 24

24 such lattices, classified by Niemeier: Leech lattice + 23
others which have ADE classification

Uniquely determined by their root systems, that are all unions
of the simply-laced root systems
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X A24
1 A12

2 A8
3 A6

4 A4
5D4 A4

6 A2
7D

2
5

GX M24 2.M12 2.AGL3(2) GL2(5)/2 GL2(3) SL2(3) Dih4

ḠX M24 M12 AGL3(2) PGL2(5) PGL2(3) PSL2(3) 22

X A3
8 A2

9D6 A11D7E6 A2
12 A15D9 A17E7 A24

GX Dih6 4 2 4 2 2 2
ḠX Sym3 2 1 2 1 1 1

X D6
4 D4

6 D3
8 D10E2

7 D2
12 D16E8 D24

GX 3.Sym6 Sym4 Sym3 2 2 1 1
ḠX Sym6 Sym4 Sym3 2 2 1 1

X E4
6 E3

8

GX GL2(3) Sym3

ḠX PGL2(3) Sym3
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For each lattice X, one gets a group:

GX = Aut(LX )/Weyl(X ),

coming from automorphisms of the lattice, and a (unique,
vector-valued) mock modular form, HX

g , for each g ∈ GX , whose
modularity properties are specified by the data of the root system
and whose coefficients are characters of GX .
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Umbral moonshine and K3 CFTs

Are the other instances of umbral moonshine related to K3 CFT?
Two ways to view decomposition (Cheng-SH)

Algebraic: The N = 4 decomposition of the K3 elliptic genus:

EG(K3) =
i θ1(τ, z)2

η3(τ)θ1(τ, 2z)

{
24µ2,0(τ, z) +

∑

r∈Z/4Z

H
X=A24

1
r (τ)θ2,r (τ, z)

}

can be viewed as contributions from BPS and non-BPS
N = 4 multiplets.

Geometric:

EG(K3) = 24ZA1,S(τ, z)− i θ1(τ, z)2

η3(τ)θ1(τ, 2z)

∑

r∈Z/4Z

H
A24

1
r (τ)θ2,r (τ, z).

Singularity configuration coming from the root system of the
Niemeier lattice, and mock modular form contribution
encoding characters of the automorphism group
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In fact, this type of decomposition holds for all 23 cases of umbral
moonshine.

EG(τ, z ;K3) = ZX ,S(τ, z) +
1

2m

∑

a,b∈Z/mZ

qa
2
y2a φX

(
τ,

z + aτ + b

m

)

where

φX =
iθ1(τ,mz)θ1(τ, (m − 1)z)

η3(τ)θ1(τ, z)

∑

r∈Z/2mZ

HX
r (τ) θm,r (τ, z)

In other words: for the 23 Niemeier lattices LX we have 23
different ways of separating EG(K3) into two parts.

1 Replace the Niemeier root system X with the corresponding
configuration of singularities to obtain a contribution to the K3
elliptic genus by the singularities.

2 Use the umbral moonshine construction for the mock modular form
associated to each LX to get the rest of EG(K3) after a summation
procedure
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Example:

EG(τ, z ;K3) = 12ZA2,S(τ, z)

+
1

6

∑

a,b∈Z/3Z
z+aτ+b

qa
2

y2a iθ1(τ, 3z)θ1(τ, 2z)

η3(τ)θ1(τ, z)

∑

r∈Z/6Z

H
A12

2
r (τ) θ3,r (τ, z)

where

HA12
2 (τ) = q−1/12(−2 + 32q + 110q2 + 288q3 + . . .)

+ q−1/3(20q + 88q2 + 220q3 + . . .)

encoding irreps of 2.M12
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We can also define a set of twining genera for each g ∈ GX

for all Niemeier lattices X :

ZX
g (τ, z) = ZX ,S

g (τ, z)+
1

2m

∑

a,b∈Z/mZ

qa
2
y2a φXg

(
τ,

z + aτ + b

m

)
.

Let the Frame shape πg encode the eigenvalues of g in its
24-dimensional representation

For g a symplectic automorphism with Frame shape πg , one is
guaranteed to get the same ZX

g no matter which umbral
group g comes from.

For g a (non-geometric) sigma-model symmetry, ZX
g can

differ depending on which umbral group g is in, even if it has
the same πg .

Do these twining genera as derived from Umbral moonshine
have any relation to symmetries of K3 sigma models?
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Symmetries of K3 CFTs, revisited

Inclusion of singular points in moduli space. If GΠ is orthogonal to
a root, then replace Leech with corresponding Niemeier, and Co0

with corresponding umbral group.

Theorem (Cheng-SH-Volpato): ΓGΠ
can be embedded in at

least one Niemeier NX and GΠ is subgroup of
O(NX ) := Aut(NX ) which fixes pointwise a sublattice of NX

of rank at least 4

Conjecture (all Niemeier are important): For all NX , there
exists a GΠ ⊂ O(Γ4,20) fixing pointwise a sublattice ΓGΠ of
rank 4 + d , d ≥ 0 s.t. ΓGΠ

can only be embedded in NX
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Worldsheet parity

We briefly comment on symmetries g which yield twining genera
with “multiplier.” Consider full twining partition function

ψCg (τ, z , ū) = trRR(gqL0− c
24 q̄L̄0− c̄

24 e2πizJ0e−2πi ūJ̄0(−1)F+F̄ ) ,

which reduces to the twined elliptic genus for u = 0:

φCg (τ, z) = ψCg (τ, z , 0). (0.1)

This should transform as

ψCg (
aτ + b

cτ + d
,

z

cτ + d
,

ū

c τ̄ + d
) = C ( a b

c d )(. . .)ψCg (τ, z , u) ,
(
a b
c d

)
∈ Γ1(N) .

Note that C ( a b
c d ) = 1 (“trivial multiplier”) unless twined Witten

index ψCg (τ, 0, 0) = 0.
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Worldsheet parity

Suppose C and C′ are two K3 sigma models related by some
duality h ∈ O(Γ4,20) that exchanges the left- and the right-moving
sector. This means that h maps the fields of C to the fields of C′
and maps the N = (4, 4) algebras to one each other as

hLnh
−1 = L̄′n hJnh

−1 = J̄ ′n , (0.2)

For g a symmetry of C and g ′ = hgh−1 a symmetry of C′, after a
bit of algebra, one can show that if the multiplier of φCg is C , then

the multiplier of φC
′

g ′ is C , the complex conjugate.
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Worldsheet parity

Implications:

If a given function ZN
g has multiplier system C : Γg → C∗

with image not lying in R, then ZN
g can only arise from sigma

model elliptic genus twined by symmetries acting differently
on the left- and the right-moving Hilbert space.

If a theory C leads to the twining function φg with a complex
multiplier system, ∃ a theory C′ with a twining function φg ′

with the complex conjugate multiplier system
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Summary

Classification of symmetries of (singular) K3 CFTs, revisited:

When taking into account singular points in K3 moduli space,
umbral groups are relevant for classification of symmetries

Certain non-geometric symmetries with complex multiplier
must arise from actions which are not invariant under
worldsheet parity symmetry

Many interesting questions remain; here are two:

What implications do our better understanding of sporadic
group symmetries in K3 sigma models have for other string
theory compactifications involving K3?

What about umbral symmetries which do not preserve a
4-plane?–necessary condition for resolving mystery of
Mathieu/umbral moonshine
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