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“Non-Abelian Noether theorem”

Noether in 2dim: symmetry  closed 1-form on Σ

P → P/H a principal H-bundle, Σ a surface
(P/H is the target space of a 2dim σ-model)

“Non-Abelian conservation law”

f : Σ→ P/H  a connection on f ∗P → Σ, flat if f is critical

Can we get it from a symmetry?

Generalized symmetry

A Manin pair h ⊂ g (invariant 〈, 〉 on g, h⊥ = h)
An action of g on P extending the h-action

+ vanishing of the 1st Pontryagin class [〈F ,F 〉] of P → P/G
(multiplicative gerbe over G acts on a gerbe over P)
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Poisson-Lie T-duality

[C. Klimč́ık, P.Š., 1995]
Lift and projection: Isomorphism of (reduced) Hamiltonian systems

P

P/H

Σ
f

P → P/G principal G -bundle

H ′ ⊂ G s.t. h′⊥ = h′

(Abelian) T-duality: G ,H,H ′ are tori
holonomy constraint = momentum quantization
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The case of P = G : on the boundary of Chern-Simons

S(A) =

∫
Y

(1

2

〈
A, dA

〉
+

1

6

〈
[A,A],A

〉)
A ∈ Ω1(Y , g)

δS =

∫
Y
〈δA,F 〉+

1

2

∫
∂Y
〈δA,A〉

Boundary condition: (exact) Lagrangian submanifold in Ω1(∂Y , g)
(of local type: in Hom(Tx ∂Y , g))

σ-model type boundary condition

needs a pseudo-Riemannian metric on Σ ⊂ ∂Y

and a reflection R : g→ g with Tr R = 0

∗(A|Σ) = RA|Σ
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The case of P = G : cylinder hollow and full

Hollow cylinder: The σ-model with the target G/H

τ

σ
Σinn

Σ

Boundary condition: ∗(A|Σ) = RA|Σ, A|Σinn
∈ h

S(A) = “

∫
p dq −Hdτ ”, H =

1

2

∫
S1

〈Aσ,R(Aσ)〉 dσ

Phase space: moduli space of flat g-connections
on an annulus ∼= T ∗(L(G/H))

Full cylinder: The duality-invariant part (reduced phase space)
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The full story: boundary of the AKSZ model

AKSZ TFT

symplectic dg manifold (V, ω,Q = {F , ·})  TFT
dimY = degω + 1 (V = g[1] produces Chern-Simons)

S(f ) =

∫
Y

(id f
∗α− f ∗F )

f : T [1]Y → V, α := iEω/ degω (dα = ω)

solutions of EL equations = dg maps T [1]Y → V

Our case: Y a solid cylinder

• degω = 2, Courant algebroid V → M (Γ(V ) = C∞(V)1)

• Boundary condition: a reflection R : V → V (generalized
metric) [generally: an exact Lagrangian submanifold of
Maps(Tx [1]Σ,V)]

• Hamiltonian system (phase space = dg maps T [1]disk → V
mod homotopy rel boundary)
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The case of a (twisted) cotangent bundle

cotangent bundle: V = T ∗[2]T [1]M

• S(f ) has only the boundary term - 2d σ-model

twisted cotangent bundle:

• a principal dg R[2]-bundle X → T [1]M:
QX = d + η ∂t , η ∈ Ω3(M)closed (gerbe)

• V = T ∗[2]X//1R[2] (exact Courant algebroids)

• S(f ) is a 2d σ-model (boundary term) + integral of η
(e.g. WZW)

summary

(twisted) cotangent bundles = 2-dim σ-models on the boundary;
other dg symplectic manifolds appear via symplectic reduction (or
Lagrangian relations)
 (almost) isomorphisms of Hamiltonian systems
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Poisson-Lie T-duality

Ingredients:

• Principal G -bundle P → P/G

• Principal R[2]-bundle XP → T [1]P, T [1]G -equivariant up to
a central extension: [iv , iw ] = 〈v ,w〉 ∂t

Symplectic dg manifolds:

• XP/H = XP/T [1]H  VP/H = T ∗[2]XP/H//1R[2]

• VP/G = T ∗[2]XP//1T̃ [1]G ( = g[1] if P = G )

VP/H  σ-model with target G/H
VP/G  non-Abelian momentum constraint

Hamiltonian systems related by (finite-dimensional) reduction
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Open ends: other dimensions

AKSZ in n + 1 dimensions

dimY = n + 1, dim Σ = n, degω = n

boundary condition: exact Lagrangian submanifold
Λx ⊂ Maps(Tx [1]Σ,V) for every x ∈ Σ

boundary solutions: dg maps T [1]Σ→ V subject to Λx

n = 1: Σ = R, V = (T ∗[1]M,F ), Λt generated by a function
Ht ∈ C∞(M), boundary solutions = Hamiltonian evolution

cotangent bundle: V = (T ∗[n]W ,QW)

equivalent to a variational problem for dg maps T [1]Σ→W

Non-trivial duality via reduction of dg symplectic manifold (and a
good choice of Λx ’s)?
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Open ends: quantization

Kramers-Wannier duality = Poincaré + Poisson

3-dim Y
Σ = gray part of ∂Y
K finite Abelian group
f : H1(Σ, ∂Σred ;K )→ C
(Boltzmann weight)

Zred(f ,K ) :=
∑

α∈H1(Y ,∂Yred ;K)

f (i∗α)

Zred(f ,K ) = Zblue(f̂ ,K ∗)

Quantum: 3d TFT with
colored boundary (RT TFT
given by the double of H)

H = Z
( )

Hopf algebra
h, h∗ ⊂ g

Thanks for your attention!
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