Pavol Ševera

Noether in 2dim: symmetry \rightsquigarrow closed 1-form on Σ

Noether in 2dim: symmetry \rightsquigarrow closed 1-form on Σ

 $P \rightarrow P/H$ a principal H-bundle, Σ a surface (P/H) is the target space of a 2dim σ -model)

"Non-Abelian conservation law"

 $f: \Sigma \to P/H \leadsto$ a connection on $f^*P \to \Sigma$, flat if f is critical

Can we get it from a symmetry?

Noether in 2dim: symmetry \rightsquigarrow closed 1-form on Σ

 $P \rightarrow P/H$ a principal H-bundle, Σ a surface (P/H) is the target space of a 2dim σ -model)

"Non-Abelian conservation law"

 $f: \Sigma \to P/H \leadsto$ a connection on $f^*P \to \Sigma$, flat if f is critical

Can we get it from a symmetry?

Generalized symmetry

A Manin pair $\mathfrak{h}\subset\mathfrak{g}$ (invariant \langle,\rangle on $\mathfrak{g},\,\mathfrak{h}^{\perp}=\mathfrak{h})$ An action of α on P extending the β -action

Noether in 2dim: symmetry \rightsquigarrow closed 1-form on Σ

 $P \rightarrow P/H$ a principal H-bundle, Σ a surface (P/H) is the target space of a 2dim σ -model)

"Non-Abelian conservation law"

 $f: \Sigma \to P/H \leadsto$ a connection on $f^*P \to \Sigma$, flat if f is critical

Can we get it from a symmetry?

Generalized symmetry

A Manin pair $\mathfrak{h}\subset\mathfrak{g}$ (invariant \langle,\rangle on $\mathfrak{g},\,\mathfrak{h}^{\perp}=\mathfrak{h})$ An action of α on P extending the β -action + vanishing of the 1st Pontryagin class $\{F, F\}$ of $P \rightarrow P/G$ (multiplicative gerbe over G acts on a gerbe over P)

[C. Klimčík, P.Š., 1995] Lift and projection: Isomorphism of (reduced) Hamiltonian systems

[C. Klimčík, P.Š., 1995] Lift and projection: Isomorphism of (reduced) Hamiltonian systems

 $P \rightarrow P/G$ principal G-bundle

[C. Klimčík, P.Š., 1995] Lift and projection: Isomorphism of (reduced) Hamiltonian systems

 $P \rightarrow P/G$ principal G-bundle

[C. Klimčík, P.Š., 1995] Lift and projection: Isomorphism of (reduced) Hamiltonian systems

 P/H $\begin{array}{ccc} & P \rightarrow P/G \ \text{principal } G\text{-bundle} \ \text{Diff} & & P/H' \end{array}$ $H' \subset G \text{ s.t. } \mathfrak{h'}^{\perp} = \mathfrak{h}'$ $H' \subset G$ s.t. $\mathfrak{h}'^{\perp} = \mathfrak{h}'$

[C. Klimčík, P.Š., 1995] Lift and projection: Isomorphism of (reduced) Hamiltonian systems

 P/H $\begin{array}{ccc} & P \rightarrow P/G \ \text{principal } G\text{-bundle} \ \text{Diff} & & P/H' \end{array}$ $H' \subset G \text{ s.t. } \mathfrak{h'}^{\perp} = \mathfrak{h}'$ $H' \subset G$ s.t. $\mathfrak{h}'^{\perp} = \mathfrak{h}'$

(Abelian) T-duality: G, H, H' are tori holonomy constraint $=$ momentum quantization

$$
S(A) = \int_Y \Bigl(\frac{1}{2}\bigl\langle A, dA \bigr\rangle + \frac{1}{6}\bigl\langle[A, A], A \bigr\rangle \Bigr) \qquad A \in \Omega^1(Y, \mathfrak{g})
$$

$$
S(A) = \int_{Y} \left(\frac{1}{2}\langle A, dA \rangle + \frac{1}{6}\langle [A, A], A \rangle\right) \qquad A \in \Omega^{1}(Y, \mathfrak{g})
$$

$$
\delta S = \int_{Y} \langle \delta A, F \rangle + \frac{1}{2} \int_{\partial Y} \langle \delta A, A \rangle
$$

Boundary condition: (exact) Lagrangian submanifold in $\Omega^1(\partial Y, \mathfrak{g})$ (of local type: in Hom $(\mathcal{T}_x \partial \mathcal{Y}, \mathfrak{g})$)

$$
S(A) = \int_{Y} \left(\frac{1}{2}\langle A, dA \rangle + \frac{1}{6}\langle [A, A], A \rangle\right) \qquad A \in \Omega^{1}(Y, \mathfrak{g})
$$

$$
\delta S = \int_{Y} \langle \delta A, F \rangle + \frac{1}{2} \int_{\partial Y} \langle \delta A, A \rangle
$$

Boundary condition: (exact) Lagrangian submanifold in $\Omega^1(\partial Y, \mathfrak{g})$ (of local type: in Hom $(T_x \partial Y, \mathfrak{g})$)

 σ -model type boundary condition

needs a pseudo-Riemannian metric on $\Sigma \subset \partial Y$

$$
S(A) = \int_{Y} \left(\frac{1}{2}\langle A, dA \rangle + \frac{1}{6}\langle [A, A], A \rangle\right) \qquad A \in \Omega^{1}(Y, \mathfrak{g})
$$

$$
\delta S = \int_{Y} \langle \delta A, F \rangle + \frac{1}{2} \int_{\partial Y} \langle \delta A, A \rangle
$$

Boundary condition: (exact) Lagrangian submanifold in $\Omega^1(\partial Y, \mathfrak{g})$ (of local type: in Hom $(\mathcal{T}_x \partial \mathcal{Y}, \mathfrak{g})$)

σ -model type boundary condition

needs a pseudo-Riemannian metric on $\Sigma \subset \partial Y$ and a reflection R : $\mathfrak{a} \rightarrow \mathfrak{a}$ with Tr R = 0

 $*(A|_{\Sigma}) = R A|_{\Sigma}$

Hollow cylinder: The σ -model with the target G/H

Hollow cylinder: The σ -model with the target G/H

Boundary condition: $*(A|_{\Sigma}) = R A|_{\Sigma}$, $A|_{\Sigma_{inn}} \in \mathfrak{h}$

Hollow cylinder: The σ -model with the target G/H

Boundary condition: * $(A|_{\Sigma}) = R A|_{\Sigma}$, $A|_{\Sigma_{inn}} \in \mathfrak{h}$

$$
S(A) = " \int p \, dq - \mathcal{H} d\tau", \quad \mathcal{H} = \frac{1}{2} \int_{S^1} \langle A_\sigma, R(A_\sigma) \rangle \, d\sigma
$$

Phase space: moduli space of flat g-connections on an annulus $\cong \mathcal{T}^*(L(G/H))$

Hollow cylinder: The σ -model with the target G/H

Boundary condition: * $(A|_{\Sigma}) = R A|_{\Sigma}$, $A|_{\Sigma_{inn}} \in \mathfrak{h}$

$$
S(A) = " \int p \, dq - \mathcal{H} d\tau", \quad \mathcal{H} = \frac{1}{2} \int_{S^1} \langle A_\sigma, R(A_\sigma) \rangle \, d\sigma
$$

Phase space: moduli space of flat g-connections on an annulus $\cong \mathcal{T}^*(L(G/H))$

Full cylinder: The duality-invariant part (reduced phase space)

AKSZ TFT

symplectic dg manifold $(\mathcal{V}, \omega, Q = \{F, \cdot\}) \rightsquigarrow TFT$ $\dim Y = \deg \omega + 1$ $(\mathcal{V} = \mathfrak{g}[1]$ produces Chern-Simons)

AKSZ TFT

symplectic dg manifold $(\mathcal{V}, \omega, Q = \{F, \cdot\}) \rightsquigarrow TFT$ $\dim Y = \deg \omega + 1$ ($V = \mathfrak{g}[1]$ produces Chern-Simons)

$$
S(f) = \int_Y (i_d f^* \alpha - f^* F)
$$

$$
f: T[1]Y \to V, \ \alpha := i_E \omega / \deg \omega \quad (d\alpha = \omega)
$$

solutions of EL equations = dg maps $T[1]Y \rightarrow V$

AKSZ TFT

symplectic dg manifold $(\mathcal{V}, \omega, Q = \{F, \cdot\}) \rightsquigarrow TFT$ $\dim Y = \deg \omega + 1$ $(\mathcal{V} = \mathfrak{q}[1]$ produces Chern-Simons)

$$
S(f) = \int_Y (i_d f^* \alpha - f^* F)
$$

$$
f: T[1]Y \to V, \ \alpha := i_E \omega / \deg \omega \quad (d\alpha = \omega)
$$

solutions of EL equations = dg maps $T[1]Y \rightarrow V$

Our case: Y a solid cylinder

- deg $\omega = 2$, Courant algebroid $V \to M$ $(\Gamma(V) = C^{\infty}(V)^{1})$
- Boundary condition: a reflection R : $V \rightarrow V$ (generalized metric) [generally: an exact Lagrangian submanifold of Maps $(T_{x}[1]\Sigma, V)$]
- Hamiltonian system (phase space = dg maps $T[1]$ disk \rightarrow \mathcal{V} mod homotopy rel boundary)

cotangent bundle: $\mathcal{V} = T^*[2] T[1] M$

• $S(f)$ has only the boundary term - 2d σ -model

cotangent bundle: $\mathcal{V} = T^*[2] T[1] M$

• $S(f)$ has only the boundary term - 2d σ -model twisted cotangent bundle:

- a principal dg $\mathbb{R}[2]$ -bundle $X \to T[1]M$: $Q_X = d + \eta \, \partial_t$, $\eta \in \Omega^3(M)_{\rm closed}$ (gerbe)
- $\mathcal{V} = \mathcal{T}^*[2] \mathcal{X} //_1 \mathbb{R}[2]$ (exact Courant algebroids)
- $S(f)$ is a 2d σ -model (boundary term) + integral of η (e.g. WZW)

cotangent bundle: $\mathcal{V} = T^*[2] T[1] M$

• $S(f)$ has only the boundary term - 2d σ -model

twisted cotangent bundle:

- a principal dg $\mathbb{R}[2]$ -bundle $X \to T[1]M$: $Q_X = d + \eta \, \partial_t$, $\eta \in \Omega^3(M)_{\rm closed}$ (gerbe)
- $\mathcal{V} = \mathcal{T}^*[2] \mathcal{X} //_1 \mathbb{R}[2]$ (exact Courant algebroids)
- $S(f)$ is a 2d σ -model (boundary term) + integral of η (e.g. WZW)

summary

(twisted) cotangent bundles $= 2$ -dim σ -models on the boundary; other dg symplectic manifolds appear via symplectic reduction (or Lagrangian relations) \rightsquigarrow (almost) isomorphisms of Hamiltonian systems

Ingredients:

• Principal G-bundle $P \rightarrow P/G$

Ingredients:

- Principal G-bundle $P \rightarrow P/G$
- Principal $\mathbb{R}[2]$ -bundle $X_P \rightarrow T[1]P$, $T[1]G$ -equivariant up to a central extension: $[i_v, i_w] = \langle v, w \rangle \partial_t$

Ingredients:

- Principal G-bundle $P \rightarrow P/G$
- Principal $\mathbb{R}[2]$ -bundle $X_P \to T[1]P$, $T[1]G$ -equivariant up to a central extension: $[i_v, i_w] = \langle v, w \rangle \partial_t$

Symplectic dg manifolds:

•
$$
X_{P/H} = X_P / T[1]H \longrightarrow V_{P/H} = T^*[2]X_{P/H} //_1 \mathbb{R}[2]
$$

Ingredients:

- Principal G-bundle $P \rightarrow P/G$
- Principal $\mathbb{R}[2]$ -bundle $X_P \to T[1]P$, $T[1]G$ -equivariant up to a central extension: $[i_v, i_w] = \langle v, w \rangle \partial_t$

Symplectic dg manifolds:

- $X_{P/H} = X_P / T[1]H \longrightarrow V_{P/H} = T^*[2]X_{P/H} //_1 \mathbb{R}[2]$
- $V_{P/G} = T^*[2]X_P/\!/_{1} \tilde{T}[1]G$ $(= \mathfrak{g}[1]$ if $P = G)$

Ingredients:

- Principal G-bundle $P \rightarrow P/G$
- Principal $\mathbb{R}[2]$ -bundle $X_P \to T[1]P$, $T[1]G$ -equivariant up to a central extension: $[i_v, i_w] = \langle v, w \rangle \partial_t$

Symplectic dg manifolds:

•
$$
X_{P/H} = X_P / T[1]H \longrightarrow V_{P/H} = T^*[2]X_{P/H} / (1 \mathbb{R}[2])
$$

•
$$
V_{P/G} = T^*[2]X_P / \! /_1 \tilde{T}[1]G
$$
 (= g[1] if $P = G$)

 $V_{P/H} \rightsquigarrow \sigma$ -model with target G/H $V_{P/G}$ \rightsquigarrow non-Abelian momentum constraint

Ingredients:

- Principal G-bundle $P \to P/G$
- Principal $\mathbb{R}[2]$ -bundle $X_P \to T[1]P$, $T[1]G$ -equivariant up to a central extension: $[i_v, i_w] = \langle v, w \rangle \partial_t$

Symplectic dg manifolds:

•
$$
X_{P/H} = X_P / T[1]H \longrightarrow V_{P/H} = T^*[2]X_{P/H} / (1 \mathbb{R}[2])
$$

•
$$
V_{P/G} = T^*[2]X_P / \! /_1 \tilde{T}[1]G
$$
 (= g[1] if $P = G$)

 $V_{P/H} \rightsquigarrow \sigma$ -model with target G/H $V_{P/G}$ \rightsquigarrow non-Abelian momentum constraint

Hamiltonian systems related by (finite-dimensional) reduction

AKSZ in $n + 1$ dimensions dim $Y = n + 1$, dim $\Sigma = n$, deg $\omega = n$ boundary condition: exact Lagrangian submanifold $\Lambda_{x} \subset$ Maps $(T_{x}[1]\Sigma, \mathcal{V})$ for every $x \in \Sigma$ boundary solutions: dg maps $T[1]\Sigma \rightarrow V$ subject to Λ_x

AKSZ in $n + 1$ dimensions dim $Y = n + 1$, dim $\Sigma = n$, deg $\omega = n$ boundary condition: exact Lagrangian submanifold $\Lambda_{x} \subset$ Maps($T_{x}[1]\Sigma, \mathcal{V}$) for every $x \in \Sigma$ boundary solutions: dg maps $T[1]\Sigma \rightarrow V$ subject to Λ_x

 $n = 1: \Sigma = \mathbb{R}, \mathcal{V} = (T^*[1]M, F), \Lambda_t$ generated by a function $H_t \in C^{\infty}(M)$, boundary solutions = Hamiltonian evolution

AKSZ in $n + 1$ dimensions dim $Y = n + 1$, dim $\Sigma = n$, deg $\omega = n$ boundary condition: exact Lagrangian submanifold $\Lambda_{x} \subset$ Maps($T_{x}[1]\Sigma, \mathcal{V}$) for every $x \in \Sigma$ boundary solutions: dg maps $T[1]\Sigma \rightarrow V$ subject to Λ_x

 $n = 1: \Sigma = \mathbb{R}, \mathcal{V} = (T^*[1]M, F), \Lambda_t$ generated by a function $H_t \in C^{\infty}(M)$, boundary solutions = Hamiltonian evolution

cotangent bundle: $\mathcal{V} = (\mathcal{T}^* [n] \mathcal{W}, \mathcal{Q}_{\mathcal{W}})$

equivalent to a variational problem for dg maps $T[1]\Sigma \rightarrow W$

AKSZ in $n + 1$ dimensions dim $Y = n + 1$, dim $\Sigma = n$, deg $\omega = n$ boundary condition: exact Lagrangian submanifold $\Lambda_{x} \subset$ Maps($T_{x}[1]\Sigma, \mathcal{V}$) for every $x \in \Sigma$ boundary solutions: dg maps $T[1]\Sigma \rightarrow V$ subject to Λ_x

 $n = 1: \Sigma = \mathbb{R}, \mathcal{V} = (T^*[1]M, F), \Lambda_t$ generated by a function $H_t \in C^{\infty}(M)$, boundary solutions = Hamiltonian evolution

cotangent bundle: $\mathcal{V} = (\mathcal{T}^* [n] \mathcal{W}, \mathcal{Q}_{\mathcal{W}})$

equivalent to a variational problem for dg maps $T[1]\Sigma \rightarrow W$

Non-trivial duality via reduction of dg symplectic manifold (and a good choice of Λ_{x} 's)?

Kramers-Wannier duality $=$ Poincaré $+$ Poisson

Kramers-Wannier duality $=$ Poincaré $+$ Poisson

Quantum: 3d TFT with colored boundary (RT TFT given by the double of H)

$$
H = Z(\boxed{}
$$

Hopf algebra

$$
\mathfrak{h}, \mathfrak{h}^* \subset \mathfrak{g}
$$

Kramers-Wannier duality $=$ Poincaré $+$ Poisson

Quantum: 3d TFT with colored boundary (RT TFT given by the double of H)

Thanks for your attention! $10/10$

$$
H = Z(\boxed{}
$$

Hopf algebra

$$
\mathfrak{h}, \mathfrak{h}^* \subset \mathfrak{g}
$$

