# NNLO predictions for t-channel single-top

Fabrizio Caola, CERN



Work done in collaboration with M. Brucherseifer and K. Melnikov

Many thanks to R. Schwienhorst for providing CPU power!

# Single-top: the price of precision

At the LHC: single-top is precision physics

Classical picture: 3 production mechanisms





With stable tops and at tree-level: clear separation / hierarchy among different channels

# The price of precision

Mixing at the quantum level



Rigid separation: good for the old 'pioneering' days, must be taken with care for precision physics

#### t- vs s- channels: it still makes sense



• beyond LO: interferences, no well defined distinction

#### HOWEVER IN PRACTICE:

- thanks to color, interference starts at NNLO (in the 5FNS)
- suppressed (color / kinematics)

#### CAN STILL TALK MEANINGFULLY ABOUT T (AND S) CHANNEL

- Talking about FIDUCIAL CROSS SECTION is much better
- Ideally for REALISTIC FINAL STATES

[Situation much more tricky for Wt/WWbb]

# The quest for precision: t-channel @ NNLO

# t-channel single top: do we need NNLO?

#### LOOK AT THE NLO PREDICTION

The total cross section at the 8 TeV LHC:

$$\sigma_{\text{LO}} = 53.77 + 3.03 - 4.33 \text{ pb}$$

$$\sigma_{\text{NLO}} = 55.13 + 1.63 - 0.90 \text{ pb}$$

#### NAIVELY:

"Small ~ 2% corrections, no need to go further"

If 'genuine' NLO corrections are at the percent level:

- NNLO in the per-mill range
- Irrelevant w.r.t. other sources of uncertainties (PDFs, m<sub>b</sub>, m<sub>t</sub>...)

HOWEVER...

# T-channel single top: do we need NNLO?

#### The total cross section at the 8 TeV LHC: A CLOSER LOOK

$$\sigma_{\text{LO}} = 53.77 + 3.03 - 4.33 \text{ pb}$$

$$\sigma_{\text{NLO}} = 55.13 + 1.63 - 0.90 \text{ pb}$$



- Scale variation (-> h.o. est.)
   similar to corrections
- ~ percent difference between 4FNS/5FNS calculations

Residual perturbative uncertainty at the percent-level

# t-channel single top: do we need NNLO?

'Typical' NLO corrections are much more ~10%



Large cancellations among channels (beware of approximations only considering one channel)

# T-channel single top: do we need NNLO?

The total cross section at the 8 TeV LHC: A CLOSER LOOK

$$\sigma_{\text{LO}} = 53.77 + 3.03 - 4.33 \text{ pb}$$

$$\sigma_{\text{NLO}} = 55.13 + 1.63 - 0.90 \text{ pb}$$

- Large (accidental?) cancellations between channels
- Scale variation (~ NNLO!) as large as corrections
- Larger corrections for more exclusive observables

To control single-top production at the percent level: NNLO CORRECTION TO T-CHANNEL PRODUCTION

### Anatomy of a NNLO computation

- For a long time, the problem of NNLO computations was how to consistently extract IR singularity from double-real emission/real-virtual emission
- This problem has now been solved both in theory (antenna subtraction, sector decomposition+FKS, semi-analytic subtraction, q<sub>T</sub>) and in practice. Colorful 2->2 has been achieved (top-pair, dijet, H+jet,...)
- Now the problematic part is computing two-loop amplitudes. State of the art:
  - Numerically: 2->2 with I extra mass-scale (tt)
  - Analytically: 2->2 with two external mass scales (VV\*)

### t-channel single-top @ NNLO

Recent developments in NNLO techniques, allowed us to compute (almost) t-channel single-top corrections.

In particular, for our computation:

- Sector-decomposition+FKS [Czakon (2010); Boughezal, Melnikov, Petriello(2011); Czakon, Heymes (2014)]
- 5FNS@NNLO (2->2) (although almost all nice features of 4FNS@NLO naturally inherited)
- Fully differential (arbitrary cuts on the final state are not a problem -> fiducial region)
- For now, top is stable but in principle possible to implement top decay in the NWA with full spin correlation (polarization studies...)

# Single-top in the 'factorized' approximation

Two-loop amplitudes:



Preliminary investigations: [Uwer et al (2014)]

Must be interfered with tree-level -> COLOR SINGLET

The 'hard' amplitude contribution is suppressed by  $I/N_c^2$  NEGLECTED IN OUR COMPUTATION

[same for s/t interference]

#### Single-top: setup and comments

In the following, I will present PRELIMINARY results with

- $m_t = 172.5$  GeV, MSTW2008 (Top WG reference)
- on-shell renormalization, pole mass
- error computed from 7-point scale variation
- very CPU intensive -> precomputed grids now implemented

Ideally, one would like to compare fiducial measurements

- definition issues minimized
- less theoretical bias

The total cross-section however can be useful

- thorough error estimates
- similar error analysis not (yet) possible at the differential level (CPU-time)
- focus of this talk

#### Results: total cross section at different energies



#### Results: total cross section at different energies

#### Combining top and anti top:



- Excellent agreement with measurements at both LHC7/8
- Tiny scale uncertainty (dominated by µ<sub>F</sub>)

#### Single-top total cross section, NNLO QCD

$$\sigma_{t+\bar{t},\text{NLO}} = 85.8^{+2.7}_{-1.7} \text{ pb}, \quad \sigma_{t+\bar{t},\text{NNLO}} = 84.2^{+0.5}_{-0.3} \text{ pb}$$
 (scale)  
 $\sigma_{t+\bar{t}}^{\text{ATLAS}} = 82.6 \pm 1.2 \text{ (stat.)} \pm 11.4 \text{ (syst.)} \pm 3.1 \text{ (PDF)} \pm 2.3 \text{ (lumi)}$   
 $\sigma_{t+\bar{t}}^{\text{CMS}} = 83.6 \pm 2.3 \text{ (stat.)} \pm 7.4 \text{ (syst.)} \text{pb}$ 



# top/anti-top ratio very stable

$$\sigma_{t, \text{LO}}/\sigma_{\bar{t}, \text{LO}} = 1.85$$

$$\sigma_{t, \text{NLO}}/\sigma_{\bar{t}, \text{NLO}} = 1.83$$

$$\sigma_{t, \text{NNLO}}/\sigma_{\bar{t}, \text{NNLO}} = 1.83$$

No substantial modification w.r.t. NLO -> handle on PDF?

#### Results: channel separation

Dressing with soft gluons the LO channels is dangerous



Cancellation patterns among different channels (big at NLO, under control at NNLO)

### NLO seems to do a pretty good job though

#### NNLO small also for more differential quantities

| $p_{\perp}$ | $\sigma_{ m LO},{ m pb}$ | $\sigma_{ m NLO},{ m pb}$ | $\delta_{ m NLO}$ | $\sigma_{ m NNLO},{ m pb}$ | $\delta_{ m NNLO}$ |
|-------------|--------------------------|---------------------------|-------------------|----------------------------|--------------------|
| 0 GeV       | $53.8^{+3.0}_{-4.3}$     | $55.1^{+1.6}_{-0.9}$      | +2.4%             | $54.2^{+0.5}_{-0.2}$       | -1.6%              |
| 20  GeV     | $46.6^{+2.5}_{-3.7}$     | $48.9^{+1.2}_{-0.5}$      | +4.9%             | $48.3^{+0.3}_{-0.02}$      | -1.2%              |
| 40  GeV     | $33.4_{-2.5}^{+1.7}$     | $36.5^{+0.6}_{-0.03}$     | +9.3%             | $36.5^{+0.1}_{+0.1}$       | -0.1%              |
| 60  GeV     | $22.0_{-1.5}^{+1.0}$     | $25.0^{+0.2}_{+0.3}$      | +13.6%            | $25.4^{-0.1}_{+0.2}$       | +1.6%              |

#### Top, 8TeV LHC





#### Anti-Top, 8TeV LHC

| $p_{\perp}$   | $\sigma_{\rm LO},{ m pb}$ | $\sigma_{ m NLO},{ m pb}$ | $\delta_{ m NLO}$ | $\sigma_{\rm NNLO}$ , pb | $\delta_{ m NNLO}$ |
|---------------|---------------------------|---------------------------|-------------------|--------------------------|--------------------|
| 0 GeV         | $29.1^{+1.7}_{-2.4}$      | $30.1^{+0.9}_{-0.5}$      | +3.4%             | $29.7^{+0.3}_{-0.1}$     | -1.3%              |
|               | $24.8^{+1.4}_{-2.0}$      |                           |                   | $26.2^{-0.01}_{-0.1}$    | -0.4%              |
| $40~{ m GeV}$ | $17.1^{+0.9}_{-1.3}$      |                           |                   |                          | +1.0%              |
| 60  GeV       | $10.8^{+0.5}_{-0.7}$      | $12.7^{+0.03}_{+0.2}$     | +17.6%            | $12.9_{+0.2}^{-0.2}$     | +1.6%              |

#### Conclusions

#### Single-top: from discovery to precision physics

- Increasing experimental precision demands for accurate theory predictions. One important ingredient: NNLO corrections for t-channel production
- Future work
  - Complete / validate benchmark cross-sections (PDF error well underway)
  - Comparisons in the fiducial region
  - Ideally, with realistic final states -> top decay
  - Matching with PS

# Thank you for your attention!

# single-top @ NNLO: 5FNS vs 4FNS@NLO



#### Inside NNLO 5FNS: ~ NLO 4FNS

- collinear regulator: MSbar vs mb (log resummed, p.s.t. neglected)
- SLC light/heavy interference neglected in our computation
- 'Nice' features of 4FNS NLO (B-JET MODELING) inherited