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Classical picture: 3 production mechanisms

T-CHANNEL

LHC8: ~ 82%

ASSOCIATED PRODUCTION

LHC8: ~ 15%

S-CHANNEL

LHC8: ~ 5%

With stable tops and at tree-level:
 clear separation / hierarchy among different channels

Single-top: the price of precision
At the LHC: single-top is precision physics



Mixing at the quantum level

T-CHANNEL

LHC8: ~ 82%

ASSOCIATED PRODUCTION

S-CHANNEL

LHC8: ~ 5%

Rigid separation: good for the old ‘pioneering’ days, 
must be taken with care for precision physics

The price of precision

INTERFERENCE

SAME FINAL STATE OF TOP-PAIR



t- vs s- channels: it still makes sense

IN PRINCIPLE: 
• beyond LO: interferences, no well defined distinction

vs

HOWEVER IN PRACTICE:
• thanks to color, interference starts at NNLO (in the 5FNS)
• suppressed (color / kinematics)

CAN STILL TALK MEANINGFULLY ABOUT T (AND S) CHANNEL

•Talking about FIDUCIAL CROSS SECTION is much better
• Ideally for REALISTIC FINAL STATES

[Situation much more tricky for Wt/WWbb]



The quest for precision:
t-channel @ NNLO



t-channel single top: do we need NNLO?
LOOK AT THE NLO PREDICTION

�LO = 53.77 + 3.03� 4.33 pb

The total cross section at the 8 TeV LHC:

�NLO = 55.13 + 1.63� 0.90 pb

“Small ~ 2% corrections, no need to go further”

HOWEVER…

NAIVELY:

If ‘genuine’ NLO corrections are at the percent level:
• NNLO in the per-mill range
• Irrelevant w.r.t. other sources of uncertainties (PDFs, mb, mt…)



T-channel single top: do we need NNLO?

�LO = 53.77 + 3.03� 4.33 pb

The total cross section at the 8 TeV LHC:  A CLOSER LOOK

�NLO = 55.13 + 1.63� 0.90 pb
3

FIG. 3: Scale dependence of the 2 → 2 and 2 → 3 calculations,
at LO (dashed) and NLO (solid) order. Factorization and
renormalization scales in the heavy and light quark lines are
equal to µ. For the LHC only top production is considered,
the behaviour of the anti-top being very similar.

jet distributions at the Tevatron [34] and the LHC. On
the other hand, the distributions of the spectator b’s are
significantly affected.

In Fig. 3 we show the cross sections for top produc-
tion at the Tevatron and the LHC in the two schemes
as a function of µ/mt, where µ is a common renormal-
ization and factorization scale. The 4F calculation has a
stronger dependence on the scale than the 5F one, par-
ticularly at the Tevatron, which simply reflects the fact
that the 2 → 3 Born calculation already contains a fac-
tor of αs. However, we observe that both calculations are
much more stable under scale variations at NLO than at
LO. To establish an optimal central value for the scales,
we have studied separately the scale dependence associ-
ated with the light and heavy quark lines. As expected,
most of the overall scale dependence is inherited from
the heavy quark line. In the 4F scheme it is minimal
for scales around mt/2 and mt/4 for the light and heavy
quark lines respectively, which therefore sets our central
scale choice. In the 5F scheme the scale dependence is
very mild and we simply choose mt for both lines.

Table I shows the predictions for the total cross sec-
tions in the two schemes, together with their uncertain-
ties. The scale uncertainties are evaluated by varying the
renormalization and factorization scales independently
between µL,H

0 /2 < µF,R < 2µL,H
0 with 1/2 < µF /µR < 2

and µL/µH constant. We see that the uncertainty in
the 4F scheme is larger than (similar to) that in the 5F
scheme at the Tevatron (LHC). The difference between
the NLO predictions in the two schemes is rather small,
with uncertainties typically less than 5% in both cases.

The exception is the 4F calculation at the Tevatron with
an uncertainty of around 10%, which is however still of
the same order as the absolute difference with the 5F
calculation. The small scale uncertainties together with
quite modest increases of the cross sections from LO to
NLO provide a clear indication that the perturbative ex-
pansions are very well behaved.

In Fig. 4 we compare NLO predictions for the top
quark and light jet pseudo rapidity η and transverse mo-
mentum pT . To define the light jet we used the kT al-
gorithm and imposed pT > 15 GeV, ∆R > 0.7. Results
are presented as a bin-by-bin ratio of the normalized (4F
and 5F) distributions. For the LHC only top production
is shown, with the behaviour of the anti-top very similar.
Although the predictions differ somewhat, the differences
are typically at the 10% level and always less than 20%.
Finally, we study the NLO distributions in η and pT for
the spectator b. We find that the fraction of events at
the Tevatron (LHC) where the b is central and at high-pT

(|η| < 2.5, pT > 20 GeV) is 28% (36%) with a very small
scale dependence. From Fig. 5 we see that the largest ef-
fects in the shapes are present at the Tevatron, where the
spectator b tends to be more forward and softer at high
pT than in the 5F calculation (where these observables
are effectively only at LO).

We have reported on the computation of the NLO
corrections to the EW production of top and bottom
quarks through the t-channel exchange of a W boson,
keeping the mass of the heavy quarks finite. This allows
a systematic study of the approximations and improve-
ments associated with the different schemes for treating
heavy flavors in QCD. We find that the 4F calculation
is well behaved: it displays a 10% (4%) scale uncer-
tainty and a modest (very small) increase of the cross
section from LO to NLO at the Tevatron (LHC). It gives
rates that are slightly smaller than the 5F predictions
(by about 6%). The two calculations are consistent at
the Tevatron, where the uncertainty of the 4F calcula-
tion is similar to their difference and marginally consis-
tent at the LHC, where the estimated uncertainties are
much smaller. Such a difference could be interpreted as

Born
TeV t (= t̄) LHC t LHC t̄

(LO) NLO (LO) NLO (LO) NLO

2 → 2 (0.92) 1.00+0.03+0.10
−0.02−0.08 (153) 156+4+3

−4−4 (89) 93+3+2
−2−2

2 → 3 (0.68) 0.94+0.07+0.08
−0.11−0.07 (143) 146+4+3

−7−3 (81) 86+4+2
−3−2

TABLE I: Inclusive cross sections (in pb) for t-channel single
top production at the Tevatron and LHC using (CTEQ6L1)
CTEQ6.6 PDF’s for the (LO) NLO predictions and µL

0 = mt

(µH
0 = mt) and µL

0 = mt/2 (µH
0 = mt/4) as central values

for the factorization and renormalization scales for the light
(heavy) line in the 5F and 4F schemes, respectively. The first
uncertainty comes from scale variations, the second from PDF
errors.

[Campbell et al (2009)]

•Scale variation (-> h.o. est.) 
similar to corrections

•~ percent difference 
between 4FNS/5FNS 
calculations

Residual perturbative 
uncertainty at the percent-level



t-channel single top: do we need NNLO?

�LO = 53.77 + 3.03� 4.33 pb

‘Typical’ NLO corrections are much more ~10%

�NLO = 55.13 + 1.63� 0.90 pb

+12% -14%

Large cancellations among channels
(beware of approximations only considering one channel)



T-channel single top: do we need NNLO?

�LO = 53.77 + 3.03� 4.33 pb

The total cross section at the 8 TeV LHC:  A CLOSER LOOK

�NLO = 55.13 + 1.63� 0.90 pb

•Large (accidental?) cancellations between channels
•Scale variation (~ NNLO!) as large as corrections
•Larger corrections for more exclusive observables

To control single-top production at the percent level:
NNLO CORRECTION TO T-CHANNEL PRODUCTION



Anatomy of a NNLO computation

• For a long time, the problem of NNLO computations 
was how to consistently extract IR singularity from 
double-real emission/real-virtual emission

• This problem has now been solved both in theory 
(antenna subtraction, sector decomposition+FKS, 
semi-analytic subtraction, qT) and in practice. Colorful  
2->2 has been achieved (top-pair, dijet, H+jet,…)

• Now the problematic part is computing two-loop 
amplitudes. State of the art:

• Numerically: 2->2 with 1 extra mass-scale (tt)

• Analytically: 2->2 with two external mass scales (VV*)



t-channel single-top @ NNLO

Recent developments in NNLO techniques, allowed us to 
compute (almost) t-channel single-top corrections.

In particular, for our computation:

•Sector-decomposition+FKS [Czakon (2010); Boughezal, Melnikov, 
Petriello(2011); Czakon, Heymes (2014)]

•5FNS@NNLO (2->2) (although almost all nice features of 
4FNS@NLO naturally inherited)

•Fully differential (arbitrary cuts on the final state are not 
a problem -> fiducial region)

•For now, top is stable but in principle possible to 
implement top decay in the NWA with full spin 
correlation (polarization studies…)



Single-top in the ‘factorized’ approximation
Two-loop amplitudes:

Trivial (~NLO2)

Simple

~OK

hard

Must be interfered with tree-level -> COLOR SINGLET

The ‘hard’ amplitude contribution is suppressed by 1/Nc2

NEGLECTED IN OUR COMPUTATION

[same for s/t interference]

Preliminary investigations: 
[Uwer et al (2014)]



Single-top: setup and comments
In the following, I will present PRELIMINARY results with
•mt = 172.5 GeV, MSTW2008 (Top WG reference)
• on-shell renormalization, pole mass
• error computed from 7-point scale variation
• very CPU intensive -> precomputed grids now implemented

Ideally, one would like to compare fiducial measurements
• definition issues minimized
• less theoretical bias

The total cross-section however can be useful
• thorough error estimates
• similar error analysis not (yet) possible at the differential level 
(CPU-time)

• focus of this talk



Results: total cross section at different energies

45

140

2500

7 8 13 25 100

LO

NLO

NNLO

20

45

140

2500

7 8 13 25 100

LO

NLO

NNLO

p
s (GeV)

p
s (GeV)

�
(p
b
)

�
(p
b
)

�t,NNLO(7 TeV) = 41.6+0.3
�0.1 pb

�t,NNLO(8 TeV) = 54.4+0.4
�0.2 pb

�t,NNLO(13 TeV) = 134.0+0.7
�0.6 pb

�t̄,NNLO(13 TeV) = 80.5+0.3
�0.6 pb

�t̄,NNLO(8 TeV) = 29.8+0.1
�0.2 pb

�t̄,NNLO(7 TeV) = 22.1+0.1
�0.1 pb



Results: total cross section at different energies
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Combining top and anti top:

•Excellent agreement with measurements at both LHC7/8

•Tiny scale uncertainty (dominated by μF)



top/anti-top ratio 
very stable

Charge ratio 
!  7 TeV (ATLAS):  
◦  σt(t) = 53.2 ± 10.8 pb,  σt(t¯) = 29.5 +7.4

-7.5 pb 
◦  Rt = σt(t)/σt(t¯) = 1.81+0.23

-0.22 
◦  Main systematics on Rt: background normalization (multijet from data, other from MC), JES 

!  8 TeV (CMS):  
◦  σt(t) = 53.8 ± 1.5(stat) ± 4.4(syst) pb,  σt(t¯) = 27.6 ± 1.3(stat) ± 3.7(syst) pb 
◦  Rt = σt(t)/σt(t¯) = 1.95 ± 0.10(stat) ± 0.19(syst) 
◦  Main systematics on Rt: PDF uncert., signal modeling 

!  Rt potentially sensitive to PDF 
!  Approaching the precision necessary to discriminate between different PDF models 
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7 TeV:  ATLAS-CONF-2012-056 
8 TeV : CMS-PAS-TOP-12-038 

 
 to be sub. to JHEP 

�t,NNLO/�t̄,NNLO = 1.83

�t,NLO/�t̄,NLO = 1.83

�t,LO/�t̄,LO = 1.85

No substantial modification w.r.t. NLO -> handle on PDF?

Single-top total cross section, NNLO QCD

�ATLAS
t+t̄ = 82.6± 1.2 (stat.)± 11.4 (syst.)± 3.1 (PDF)± 2.3 (lumi)

�CMS
t+t̄ = 83.6± 2.3 (stat.)± 7.4 (syst.)pb

�t+t̄,NLO = 85.8+2.7
�1.7 pb, �t+t̄,NNLO = 84.2+0.5

�0.3 pb (scale)



Results: channel separation
Dressing with soft gluons the LO channels is dangerous
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Cancellation patterns among different channels 
(big at NLO, under control at NNLO)
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NLO seems to do a pretty good job though
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p⊥ σLO, pb σNLO, pb δNLO σNNLO, pb δNNLO

0 GeV 53.8+3.0
−4.3 55.1+1.6

−0.9 +2.4% 54.2+0.5
−0.2 −1.6%

20 GeV 46.6+2.5
−3.7 48.9+1.2

−0.5 +4.9% 48.3+0.3
−0.02 −1.2%

40 GeV 33.4+1.7
−2.5 36.5+0.6

−0.03 +9.3% 36.5+0.1
+0.1 −0.1%

60 GeV 22.0+1.0
−1.5 25.0+0.2

+0.3 +13.6% 25.4−0.1
+0.2 +1.6%

TABLE I: QCD corrections to t-channel single top quark production cross sections at 8 TeV LHC with a cut on the transverse
momentum of the top quark p⊥. Cross sections are shown at leading, next-to-leading and next-to-next-to-leading order in
dependence of the factorization and renormalization scale µ = mt (central value), µ = 2mt (upper value) and µ = mt/2 (lower
value). Corrections at NLO and at NNLO (relative to the NLO) are shown in percent for µ = mt.

las for the phase-space parametrization relevant for the
ub → dt, ub → dtg and ub → dtgg sub-processes, as well
as a discussion of an appropriate choices of variables rel-
evant for the extraction of singularities can be found in
that reference. Using the language of that paper, we only
need to consider “initial-state” sectors since there are no
collinear singularities associated with final state particles
due to the fact that top quarks are massive. All calcula-
tions required for initial-state sectors are documented in
Ref. [61] except that here we need soft and collinear lim-
its for incoming quarks, rather than gluons, and the soft
current for a massive particle. This, however, is a minor
difference that does not affect the principal features of
the computational method.

The above discussion of the NNLO QCD corrections
to the heavy quark line can be applied almost verba-
tim to corrections to the light quark line. The two-loop
corrections for the 0 → qq̄′W ∗ vertex are known since
long ago [62–64]. One-loop corrections to 0 → qq̄′gW ∗

scattering are also well-known; we implemented the re-
sult presented in [65] and again checked the implemen-
tation against an independent computation based on the
Passarino-Veltman reduction. Apart from different am-
plitudes, the only minor difference with respect to cor-
rections to the heavy quark line is that in this case there
are collinear singularities associated with both, the in-
coming and the outgoing quark lines. We deal with this
problem splitting the real-emission contribution into sec-
tors, see Ref. [61]. In the language of that paper, we
have to consider “initial-initial”, “final-final” and mixed
“initial-final” sectors. Finally, we briefly comment on the
contribution shown in Fig.1c. We note that, although
formally NNLO, it is effectively the product of NLO cor-
rections to the heavy and the light quark lines, so that
it can be dealt with using techniques familiar from NLO
computations.

We will now comment on our treatment of γ5. For
perturbative calculations at higher orders the presence of
the Dirac matrix γ5 is a nuisance since it can not be con-
tinued to d-dimensions in a straightforward way. While
computationally-efficient ways to deal with γ5 in com-
putations, that employ dimensional regularization, exist
(see e.g. Ref. [66]), they are typically complex and un-
transparent. Fortunately, there is a simple way to solve
the γ5 problem in our case. Indeed, in the calculation of
virtual corrections to the tWb weak vertex, γ5 is taken

to be anti-commuting [40–43]. This enforces the left-
handed polarization of the b-quark and removes the issue
of γ5 altogether. Indeed, if we imagine that the weak
b → t transition is facilitated by the vector current but
we select the b-quark with left-handed polarization only,
we will obtain the same result as when the calculation is
performed with the anti-commuting γ5. Since the can-
cellation of infra-red and collinear divergences occurs for
each polarization of the incoming b-quark separately, this
approach completely eliminates the need to specify the
scheme for dealing with γ5 and automatically enforces
simultaneous conservation of vector and axial currents –
a must-have feature if quantum anomalies are neglected.
Of course, this requires that we deal with the γ5 appear-
ing in real emission diagrams in the same way as in the
virtual correction and this is, indeed, what we do by us-
ing helicity amplitudes, as described in [39].

We have performed several checks to ensure that our
calculation of NNLO QCD corrections to single top quark
production is correct. For example, we have compared all
the tree-level matrix elements that are used in this com-
putation, e.g. ub → dt+ng, with 0 ≤ n ≤ 2, ub → dt+qq̄,
ug → db̄t+mg, 0 ≤ m ≤ 1, against MadGraph [67] and
found complete agreement. We have extracted one-loop
amplitudes for 0 → Wtb̄g from MCFM [45] and checked
them against our own implementation of the Passarino-
Veltman reduction, for both the W ∗b → tg and the
W ∗g → tb̄ processes. We have cross-checked one-loop
amplitudes for W ∗u → dg and related channels against
MadLoop [68]. In the intermediate stages of the compu-
tation, we also require reduced tree and one-loop ampli-
tudes computed to higher orders in ϵ, as explained e.g. in
Ref. [61]. We checked that their contributions drop out
from the final results, in accord with the general conclu-
sion of Ref. [69].

One of the most important checks is provided by the
cancellation of infra-red and collinear divergences. In-
deed, the technique for NNLO QCD computations de-
scribed in Refs. [47–49] leads to a Laurent expansion
of different contributions to differential cross sections in
the dimensional regularization parameter ϵ; coefficients
of this expansion are computed by numerical integra-
tion. Independence of physical cross sections on the reg-
ularization parameter is therefore achieved numerically,
when different contributions to such cross sections (two-
loop virtual corrections, one-loop corrections to single

5

p⊥ σLO, pb σNLO, pb δNLO σNNLO, pb δNNLO

0 GeV 29.1+1.7
−2.4 30.1+0.9

−0.5 +3.4% 29.7+0.3
−0.1 −1.3%

20 GeV 24.8+1.4
−2.0 26.3+0.7

−0.3 +6.0% 26.2−0.01
−0.1 −0.4%

40 GeV 17.1+0.9
−1.3 19.1+0.3

+0.1 +11.7% 19.3−0.2
+0.1 +1.0%

60 GeV 10.8+0.5
−0.7 12.7+0.03

+0.2 +17.6% 12.9−0.2
+0.2 +1.6%

TABLE II: QCD corrections to the t-channel single anti-top production cross sections at 8 TeV LHC with a cut on the transverse
momentum of the anti-top quark p⊥. Cross sections are shown at leading, next-to-leading and next-to-next-to-leading order in
dependence of the factorization and renormalization scale µ = mt (central value), µ = 2mt (upper value) and µ = mt/2 (lower
value). Corrections at NLO and at NNLO (relative to the NLO) are shown in percent for µ = mt.

real emission contributions, double real emission contri-
butions, renormalization, collinear subtractions of parton
distribution functions, etc.) are combined. The numeri-
cal cancellation of the O(ϵi) contributions, −4 ≤ i ≤ −1
is an important check of the calculation. We computed
partonic cross sections for the t-channel single-top pro-
duction at three different center of mass energies and
observed cancellation of 1/ϵ4, 1/ϵ3, 1/ϵ2 and 1/ϵ singu-
larities. For the 1/ϵ contributions to the cross section,
we find that the cancellation is at the per mill level,
independent of the center-of-mass collision energy. For
higher poles, cancellations improve by, roughly, an order
of magnitude per power of 1/ϵ. We have also checked that
similar degree of cancellations is achieved for hadronic
cross sections, which are computed by integrating par-
tonic cross sections with parton distribution functions.

III. RESULTS

We are now in position to present the results of our
calculation. We have chosen to consider the 8 TeV LHC.
We use the MSTW2008 set for parton distribution func-
tions and αs; when results for NkLO cross sections are
reported, the relevant PDF set and αs value are used.
We also set the CKM matrix to the identity matrix, the
top quark mass to mt = 173.2 GeV, the Fermi constant
to GF = 1.16639× 10−5 GeV−2 and the mass of the W
boson to 80.398 GeV. The factorization and renormaliza-
tion scales are by default set to the value of the top quark
mass mt and varied by a factor two to probe sensitivity
of the results to these unphysical scales.2 We account for
all partonic channels. At LO, this means that the light
quark transition is initiated either by an up-type quark or
by a down-type anti-quark, while the heavy quark tran-
sition can only be initiated by a b-quark. At NLO, the
gluon channel opens up, both for the light and the heavy
quark transitions. At NNLO, in addition to that, we

2 We note that by comparing NLO QCD corrections to single-top
production in four- and five-flavor schemes, it was suggested [25]
that choosing mt/2 as a central value is more appropriate. Given
reduced dependence on the renormalization/factorization scales
at NNLO, this issue is less relevant for our computation.

also have to take into account pure singlet contributions,
for example W ∗b → būd for the light quark line and
W ∗u → ub̄t for the heavy quark line. Although we in-
clude all partonic channels in our calculation, it turns
out that their contributions to single-top production dif-
fer significantly. Indeed, we find that it is important to
include bu → dt, gu → dtb̄, qu → dqtb̄ and gb → qq̄′t
in the computation of NLO and NNLO QCD corrections
while other channels can, in principle, be neglected.

The simplest observable to discuss is the total cross
section. Using the input parameters given in the previ-
ous paragraph, we find the leading order cross section for
single-top production at 8 TeV LHC to be σLO

t = 53.8 pb,
if we set the renormalization and factorization scales to
µ = mt. The next-to-leading order QCD cross section at
µ = mt is σNLO

t = 55.1 pb, corresponding to an increase
of the leading order cross section by 2.5 percent. It is
important to realize that this small increase is the re-
sult of significant cancellations between various sources
of QCD corrections. For example, NLO QCD correc-
tions in the bq partonic channel increase the leading or-
der cross section by 10%, which is more in line with the
expected size of NLO QCD corrections. However, this
positive correction is largely canceled by the quark-gluon
channel that appears at next-to-leading order for the first
time. The gluon-initiated channels have large and nega-
tive cross sections. Indeed, the qg → tb̄q′ and gb → qq̄′t
partonic processes change the leading order cross section
by −14%. When the leading order cross section is com-
puted with NLO PDFs, it increases by 8%. Finally, when
all the different contributions are combined, a small pos-
itive change in the single-top production cross section at
NLO is observed. The scale dependence of leading and
next-to-leading order cross sections is shown in Table I.
For the total single-top production cross section, we ob-
serve that the residual scale dependence at NLO is at a
few percent level. For µ = mt, the NNLO QCD cross
section is σNNLO

t = 54.2 pb, corresponding to a decrease
of the NLO cross section by −1.5%. The magnitude of
NNLO corrections is similar to the NLO corrections, il-
lustrating the accidental smallness of the latter. As can
be seen from Table I, the residual scale dependence of the
NNLO result is very small, of the order of one percent.

The simplest observable, beyond the total cross sec-
tion that one can study, is the cross section with a cut on
the transverse momentum of the top quark. The corre-

NNLO small also for more differential quantities

Top, 8TeV LHC

Anti-Top, 8TeV LHC
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Conclusions
Single-top: from discovery to precision physics

• Increasing experimental precision demands for accurate 
theory predictions. One important ingredient:                            
NNLO corrections for t-channel production

•Future work
• Complete / validate benchmark cross-sections (PDF error well 
underway)

• Comparisons in the fiducial region
• Ideally, with realistic final states -> top decay
• Matching with PS



Thank you for  
your attention!



single-top @ NNLO: 5FNS vs 4FNS@NLO

NLO

NNLO

Inside NNLO 5FNS: ~ NLO 4FNS
• collinear regulator: MSbar vs mb (log resummed, p.s.t. neglected)
• SLC light/heavy interference neglected in our computation
• ‘Nice’ features of 4FNS NLO (B-JET MODELING) inherited


