TOPLHCWG open meeting, May 20–21, 2015

Update on ATLAS m_{top} results

G. Cortiana, MPP Munich

 $\Delta p \cdot \Delta q \ge \frac{1}{2} t$

Max-Planck-Institut für Physik (Werner-Heisenberg-Institu<u>t)</u>

New 7 TeV top quark mass results, submitted to EPJC, arXiv:1503.05427.

 New 7 TeV top quark mass results, submitted to EPJC, <u>arXiv:1503.05427</u>.
 + improved channel combination

(interesting in view of the next LHC, and Tevatron+LHC combination efforts)

G. Cortiana 5

Analyses overview

Top Pair Branching Fractions

dileptons

Process	Sum	L
<i>tī</i> signal	5790 ±	360
Single top quark (signal)	264 ±	15
Z+jets	38 ±	12
WW/WZ/ZZ	7.62 ±	0.67
NP/fake-leptons (data)	55 ±	30
Signal+background	6150 ±	360
Data	6476	5
Exp. Bkg. frac.	$0.02 \pm$	0.00
Data/MC	1.05 ±	0.06

lepton+jets

Process	Sum		
<i>tī</i> signal	$18100 \pm$	1100	
Single top quark (signal)	$1052 \pm$	57	
W+jets (data)	$2400 \pm$	730	
Z+jets	303 ±	93	
WW/WZ/ZZ	$48.2 \pm$	2.6	
NP/fake-leptons (data)	780 ±	390	
Signal+background	$22700 \pm$	1400	
Data	21763		
Exp. Bkg. frac.	0.16 ±	0.01	
Data/MC	0.96 ±	0.06	

- Select events with one or two isolated charged leptons (e/µ) and (b)-jets: I+jets and dilepton channels.
- Apply b-tagging requirements (WP 75%) to reduce background and facilitate event reconstruction
 - Use events with 1 or 2 b-tags (≥2 for the I+jets)
- Expected background fractions are 16% and 2% for I+jets and dilepton channels respectively.

6

Event reconstruction: I+jets

Estimator sensitive to m_{top}

Use a kinematical fit to the decay hypothesis to relate reconstructed objects to the original partons. m_{top}^{reco} can be obtained from the best fit considering all jet permutations and physics object resolutions (via transfer functions)

Template method: fit the data distribution of a given m_{top} estimator (i.e. m_{top}^{reco}) to the sum of signal and background PDFs (probability distribution functions).

The problem...

Large dependence on

the jet energy scale.

Large systematics

Good sensitivity to the underlying top quark mass. The quantity to be measured

Large dependence on

the b-jet energy scale.

Large systematics

The problem... and its solution

The problem... and its solution

The problem... and its solution

Event reconstruction: dilepton

*m*_{*lb*} signal PDF from top quark pair MC

- Select events with
 - exactly 2 oppositely charged e, or μ
 - E_T^{miss}
 - =1 or =2 b-tagged jets
- Background fraction ≤ 2%
- Under-constrained event kinematics (two escaping neutrinos)
- Use the template method with the m_{lb} observable as an estimator for m_{top}:
 - exploiting a partial reconstruction of the event.

Same problem as for the I+jets...

underlying top quark mass. The quantity to be measured Large dependence on the jet energy scale. Large systematics Large dependence on the b-jet energy scale. Large systematics

- Why not "transfer" JSF and bJSF from the I+jets?
 - The m_{lb} variable is degenerate in m_{top}, JSF and bJSF. The dilepton events do not further constrain the scales but effectively "copy" them over from the I+jets analysis (no information gain)
 - We could reduce the JES/bJES uncertainties in the dilepton analysis, however this would increase correlations between the estimators used in the two channels, reducing the gain in the combination (see Table VI of <u>PRD 79 (2009) 092005</u>).
 - We are interested in the best possible knowledge of m_{top}, not the best m_{top} per each decay channel!

Fit to the data

data, I+jets

600

ATLAS

	$t\bar{t} \rightarrow lepton+jets$						
	$m_{\rm top}^{\ell+\rm jets}$ [GeV]						
Results	172.33	1.019	1.003				
Statistics	0.75	0.003	0.008				
- Stat. comp. (m_{top})	0.23	n/a	n/a				
– Stat. comp. (JSF)	0.25	0.003	n/a				
– Stat. comp. (bJSF)	0.67	0.000	0.008				
Method	0.11 ± 0.10	0.001	0.001				
Signal MC	0.22 ± 0.21	0.004	0.002				
Hadronisation	0.18 ± 0.12	0.007	0.013				
ISR/FSR	0.32 ± 0.06	0.017	0.007				
Underlying event	0.15 ± 0.07	0.001	0.003				
Colour reconnection	0.11 ± 0.07	0.001	0.002				
PDF	0.25 ± 0.00	0.001	0.002				
W/Z+jets norm	0.02 ± 0.00	0.000	0.000	1			
W/Z+jets shape	0.29 ± 0.00	0.000	0.004				
NP/fake-lepton norm.	0.10 ± 0.00	0.000	0.001				
NP/fake-lepton shape	0.05 ± 0.00	0.000	0.001				
Jet energy scale	0.58 ± 0.11	0.018	0.009				
b-Jet energy scale	0.06 ± 0.03	0.000	0.010				
Jet resolution	0.22 ± 0.11	0.007	0.001				
Jet efficiency	0.12 ± 0.00	0.000	0.002				
Jet vertex fraction	0.01 ± 0.00	0.000	0.000				
b-Tagging	0.50 ± 0.00	0.001	0.007				
$E_{ m T}^{ m miss}$	0.15 ± 0.04	0.000	0.001				
Leptons	0.04 ± 0.00	0.001	0.001				
Pile-up	0.02 ± 0.01	0.000	0.000				
Total	1.27 ± 0.33	0.027	0.024	I			

Statistical components:

 the extra statistical uncertainties on m_{top} introduced by the simultaneous JSF (bJSF) fits.

	$t\bar{t} \rightarrow le$	$t\bar{t} \rightarrow lepton+jets$							
	$m_{top}^{\ell+jets}$ [GeV]	JSF	bJSF	1					
Results	172.33	1.019	1.003	t					
Statistics	0.75	0.003	0.008	t					
- Stat. comp. (m_{top})	0.23	n/a	n/a						
– Stat. comp. (JSF)	0.25	0.003	n/a						
– Stat. comp. (bJSF)	0.67	0.000	0.008						
Method	0.11 ± 0.10	0.001	0.001						
Signal MC	0.22 ± 0.21	0.004	0.002						
Hadronisation	0.18 ± 0.12	0.007	0.013						
ISR/FSR	0.32 ± 0.06	0.017	0.007						
Underlying event	0.15 ± 0.07	0.001	0.003						
Colour reconnection	0.11 ± 0.07	0.001	0.002						
PDF	0.25 ± 0.00	0.001	0.002						
W/Z+jets norm	0.02 ± 0.00	0.000	0.000	1					
W/Z+jets shape	0.29 ± 0.00	0.000	0.004						
NP/fake-lepton norm.	0.10 ± 0.00	0.000	0.001						
NP/fake-lepton shape	0.05 ± 0.00	0.000	0.001						
Jet energy scale	0.58 ± 0.11	0.018	0.009]					
b-Jet energy scale	0.06 ± 0.03	0.000	0.010	7					
Jet resolution	0.22 ± 0.11	0.007	0.001	1					
Jet efficiency	0.12 ± 0.00	0.000	0.002						
Jet vertex fraction	0.01 ± 0.00	0.000	0.000						
b-Tagging	0.50 ± 0.00	0.001	0.007						
$E_{ m T}^{ m miss}$	0.15 ± 0.04	0.000	0.001						
Leptons	0.04 ± 0.00	0.001	0.001						
Pile-up	0.02 ± 0.01	0.000	0.000						
Total	1.27 ± 0.33	0.027	0.024						

Statistical components:

the extra statistical uncertainties on m_{top} introduced by the simultaneous JSF (bJSF) fits.

reduced bJES uncertainty from 0.88 GeV in a 2-dim fit to 0.06 GeV thanks to the 3rd dimension

	$t\bar{t} \rightarrow lepton+jets$						
	$m_{top}^{\ell+jets}$ [GeV]	JSF	bJSF				
Results	172.33	1.019	1.003				
Statistics	0.75	0.003	0.008				
- Stat. comp. (m_{top})	0.23	n/a	n/a				
– Stat. comp. (JSF)	0.25	0.003	n/a				
– Stat. comp. (bJSF)	0.67	0.000	0.008				
Method	0.11 ± 0.10	0.001	0.001				
Signal MC	0.22 ± 0.21	0.004	0.002				
Hadronisation	0.18 ± 0.12	0.007	0.013				
ISR/FSR	0.32 ± 0.06	0.017	0.007				
Underlying event	0.15 ± 0.07	0.001	0.003				
Colour reconnection	0.11 ± 0.07	0.001	0.002				
PDF	0.25 ± 0.00	0.001	0.002				
W/Z+jets norm	0.02 ± 0.00	0.000	0.000				
W/Z+jets shape	0.29 ± 0.00	0.000	0.004				
NP/fake-lepton norm.	0.10 ± 0.00	0.000	0.001				
NP/fake-lepton shape	0.05 ± 0.00	0.000	0.001				
Jet energy scale	0.58 ± 0.11	0.018	0.009				
b-Jet energy scale	0.06 ± 0.03	0.000	0.010				
Jet resolution	0.22 ± 0.11	0.007	0.001				
Jet efficiency	0.12 ± 0.00	0.000	0.002				
Jet vertex fraction	0.01 ± 0.00	0.000	0.000				
b-Tagging	0.50 ± 0.00	0.001	0.007				
$E_{ m T}^{ m miss}$	0.15 ± 0.04	0.000	0.001				
Leptons	0.04 ± 0.00	0.001	0.001				
Pile-up	0.02 ± 0.01	0.000	0.000				
Total	1.27 ± 0.33	0.027	0.024				

Statistical components:

 the extra statistical uncertainties on m_{top} introduced by the simultaneous JSF (bJSF) fits.

MC modelling

 dominant uncertainties are reduced due to the simultaneous fit of the JSF/ bJSF, with respect to a 2-dim analysis

reduced bJES uncertainty from 0.88 GeV in a 2-dim fit to 0.06 GeV thanks to the 3rd dimension

	$t\bar{t} \rightarrow lepton+jets$						
	$m_{top}^{\ell+jets}$ [GeV]	JSF	bJSF				
Results	172.33	1.019	1.003				
Statistics	0.75	0.003	0.008				
$-Stat. comp. (m_{top})$	0.23	n/a	n/a				
– Stat. comp. (JSF)	0.25	0.003	n/a				
– Stat. comp. (bJSF)	0.67	0.000	0.008				
Method	0.11 ± 0.10	0.001	0.001				
Signal MC	0.22 ± 0.21	0.004	0.002				
Hadronisation	0.18 ± 0.12	0.007	0.013				
ISR/FSR	0.32 ± 0.06	0.017	0.007				
Underlying event	0.15 ± 0.07	0.001	0.003				
Colour reconnection	0.11 ± 0.07	0.001	0.002				
PDF	0.25 ± 0.00	0.001	0.002				
W/Z+jets norm	0.02 ± 0.00	0.000	0.000				
W/Z+jets shape	0.29 ± 0.00	0.000	0.004				
NP/fake-lepton norm.	0.10 ± 0.00	0.000	0.001				
NP/fake-lepton shape	0.05 ± 0.00	0.000	0.001				
Jet energy scale	0.58 ± 0.11	0.018	0.009				
b-Jet energy scale	0.06 ± 0.03	0.000	0.010				
Jet resolution	0.22 ± 0.11	0.007	0.001				
Jet efficiency	0.12 ± 0.00	0.000	0.002				
Jet vertex fraction	0.01 ± 0.00	0.000	0.000				
b-Tagging	0.50 ± 0.00	0.001	0.007				
$E_{ m T}^{ m miss}$	0.15 ± 0.04	0.000	0.001				
Leptons	0.04 ± 0.00	0.001	0.001				
Pile-up	0.02 ± 0.01	0.000	0.000				
Total	1.27 ± 0.33	0.027	0.024				

- Residual JES uncertainty
 - introduced by the p_T dependence of the JES uncertainty, not recoverable by a global JSF
 - Half of that from a 1-dim analysis (no JSF).

- b-tagging:
 - the 3dTMT has a large sensitivity to b-tag systematics (related to the p_T dependence of the datato-MC b-tagging scale factors uncertainties, affecting the shape of the R_{bq}^{reco} , the 3rd dimension). Reduced from 0.8 GeV in the preliminary result to 0.5 GeV, by simultaneous variations of the common systematics affecting the b-tagging calibration and the m_{top} analysis

	$t\bar{t} \rightarrow le$	pton+jets		$t\bar{t} \rightarrow dilepton$	Τ	
	$m_{top}^{\ell+jets}$ [GeV]	JSF	bJSF	m ^{dil} _{top} [GeV]	-	
Results	172.33	1.019	1.003	173.79		
Statistics	0.75	0.003	0.008	0.54		
- Stat. comp. (m_{top})	0.23	n/a	n/a	0.54		
– Stat. comp. (JSF)	0.25	0.003	n/a	n/a		
– Stat. comp. (bJSF)	0.67	0.000	0.008	n/a		
Method	0.11 ± 0.10	0.001	0.001	0.09 ± 0.07		
Signal MC	0.22 ± 0.21	0.004	0.002	0.26 ± 0.16		
Hadronisation	0.18 ± 0.12	0.007	0.013	0.53 ± 0.09		
ISR/FSR	0.32 ± 0.06	0.017	0.007	0.47 ± 0.05	r -	
Underlying event	0.15 ± 0.07	0.001	0.003	0.05 ± 0.05		Dilepton:
Colour reconnection	0.11 ± 0.07	0.001	0.002	0.14 ± 0.05		Main systematic uncertainties
PDF	0.25 ± 0.00	0.001	0.002	0.11 ± 0.00		due to JES/bJES (no in-situ
W/Z+jets norm	0.02 ± 0.00	0.000	0.000	0.01 ± 0.00		constraint) and MC modelling
W/Z+jets shape	0.29 ± 0.00	0.000	0.004	0.00 ± 0.00		(ISD/ESD + Hadroniaction)
NP/fake-lepton norm.	0.10 ± 0.00	0.000	0.001	0.04 ± 0.00		(ISR/FSR + Hauronisation)
NP/fake-lepton shape	0.05 ± 0.00	0.000	0.001	0.01 ± 0.00		
Jet energy scale	0.58 ± 0.11	0.018	0.009	0.75 ± 0.08		
b-Jet energy scale	0.06 ± 0.03	0.000	0.010	0.68 ± 0.02		
Jet resolution	0.22 ± 0.11	0.007	0.001	0.19 ± 0.04		
Jet efficiency	0.12 ± 0.00	0.000	0.002	0.07 ± 0.00		
Jet vertex fraction	0.01 ± 0.00	0.000	0.000	0.00 ± 0.00		
b-Tagging	0.50 ± 0.00	0.001	0.007	0.07 ± 0.00		
$E_{ m T}^{ m miss}$	0.15 ± 0.04	0.000	0.001	0.04 ± 0.03		
Leptons	0.04 ± 0.00	0.001	0.001	0.13 ± 0.00		
Pile-up	0.02 ± 0.01	0.000	0.000	0.01 ± 0.00		
Total	1.27 ± 0.33	0.027	0.024	1.41 ± 0.24	T	

	$t\bar{t} \rightarrow le$	pton+jets		$t\bar{t} \rightarrow dilepton$	dilepton Combination		
	$m_{top}^{\ell+jets}$ [GeV]	JSF	bJSF	m ^{dil} _{top} [GeV]	m_{top}^{comb} [GeV]	ρ	
Results	172.33	1.019	1.003	173.79	172.99		
Statistics	0.75	0.003	0.008	0.54	0.48	0	
- Stat. comp. (m_{top})	0.23	n/a	n/a	0.54			
– Stat. comp. (JSF)	0.25	0.003	n/a	n/a			
– Stat. comp. (bJSF)	0.67	0.000	0.008	n/a			
Method	0.11 ± 0.10	0.001	0.001	0.09 ± 0.07	0.07	0	
Signal MC	0.22 ± 0.21	0.004	0.002	0.26 ± 0.16	0.24	+1.00	
Hadronisation	0.18 ± 0.12	0.007	0.013	0.53 ± 0.09	0.34	+1.00	
ISR/FSR	0.32 ± 0.06	0.017	0.007	0.47 ± 0.05	0.04	-1.00	
Underlying event	0.15 ± 0.07	0.001	0.003	0.05 ± 0.05	0.06	-1.00	
Colour reconnection	0.11 ± 0.07	0.001	0.002	0.14 ± 0.05	0.01	-1.00	
PDF	0.25 ± 0.00	0.001	0.002	0.11 ± 0.00	0.17	+0.57	
W/Z+jets norm	0.02 ± 0.00	0.000	0.000	0.01 ± 0.00	0.02	+1.00	
W/Z+jets shape	0.29 ± 0.00	0.000	0.004	0.00 ± 0.00	0.16	0	
NP/fake-lepton norm.	0.10 ± 0.00	0.000	0.001	0.04 ± 0.00	0.07	+1.00	
NP/fake-lepton shape	0.05 ± 0.00	0.000	0.001	0.01 ± 0.00	0.03	+0.23	
Jet energy scale	0.58 ± 0.11	0.018	0.009	0.75 ± 0.08	0.41	-0.23	
b-Jet energy scale	0.06 ± 0.03	0.000	0.010	0.68 ± 0.02	0.34	+1.00	
Jet resolution	0.22 ± 0.11	0.007	0.001	0.19 ± 0.04	0.03	-1.00	
Jet efficiency	0.12 ± 0.00	0.000	0.002	0.07 ± 0.00	0.10	+1.00	
Jet vertex fraction	0.01 ± 0.00	0.000	0.000	0.00 ± 0.00	0.00	-1.00	
b-Tagging	0.50 ± 0.00	0.001	0.007	0.07 ± 0.00	0.25	-0.77	
$E_{ m T}^{ m miss}$	0.15 ± 0.04	0.000	0.001	0.04 ± 0.03	0.08	-0.15	
Leptons	0.04 ± 0.00	0.001	0.001	0.13 ± 0.00	0.05	-0.34	
Pile-up	0.02 ± 0.01	0.000	0.000	0.01 ± 0.00	0.01	0	
Total	1.27 ± 0.33	0.027	0.024	1.41 ± 0.24	0.91	-0.07	

The combination is performed with BLUE taking into account the signs of the induced m_{top} variations in the two channels under the same systematic effect.

Size (and sign) of the systematic uncertainties in the two channels:

Size (and sign) of the systematic uncertainties in the two channels:

- I+jets (1-dim)
- I+jets (3-dim)
 - Overall syst. reduction
 - De-correlation of the observables

Conclusions

- The new ATLAS top quark mass results in the I+jets and dilepton channels are:
 - $m_{top}^{\ell+jets} = 172.33 \pm 0.75 \text{ (stat + JSF + bJSF)} \pm 1.02 \text{ (syst) GeV},$ $JSF = 1.019 \pm 0.003 \text{ (stat)} \pm 0.027 \text{ (syst)},$ $bJSF = 1.003 \pm 0.008 \text{ (stat)} \pm 0.023 \text{ (syst)},$ $m_{top}^{dil} = 173.79 \pm 0.54 \text{ (stat)} \pm 1.30 \text{ (syst) GeV}.$
 - These supersede the preliminary results, and constitute an improvement in precision of 18% and 14% for the I+jets and dilepton channels, respectively.
 - Their combination yields:

 $m_{\text{top}}^{\text{comb}} = 172.99 \pm 0.48 \text{ (stat)} \pm 0.78 \text{ (syst)} \text{ GeV} = 172.99 \pm 0.91 \text{ GeV}.$

- Improving by 28% the precision of the most precise input measurement.
- It is more precise than the previous LHC combination (m_{top}^{LHC} = 173.29 ± 0.95 GeV), which included the ATLAS conference note results, based on the same dataset (previous m_{top}^{ATLAS} = 172.65 ± 1.44 GeV).

Outlook

- In view of the next LHC/Tevatron+LHC combination (see Benjamin's talk) an improved treatment of the correlations for analyses from the same experiment could significantly improve our knowledge of m_{top}.
 - Variations of the correlation assumption within the same experiment have proven to be important in the first m_{top} world combination.
 - 1-dim and 2-dim analyses are performed by all experiments, such that sizeable de-correlation effects might be present and could be exploited to improve the final m_{top} precision.

JES uncertainties breakdown

	$t\bar{t} \rightarrow lepton+jets$			$t\bar{t} \rightarrow dilepton$	lepton Combination		
	$\Delta m_{\rm top}^{\ell+{\rm jets}}$ [GeV]	ΔJSF	ΔbJSF	$\Delta m_{\rm top}^{\rm dil}$ [GeV]	$\Delta m_{top}^{comb}[GeV]$	ρ	
Statistical (total)	0.18 ± 0.04	0.003	0.001	0.16 ± 0.03	0.11	-0.25	
– Statistical NP1	-0.17 ± 0.02	+0.002	+0.001	$+0.01 \pm 0.02$	0.09	-1.00	
– Statistical NP2	$+0.02 \pm 0.00$	+0.001	-0.000	$+0.05 \pm 0.00$	0.03	+1.00	
– Statistical NP3	-0.01 ± 0.02	+0.001	+0.001	$+0.12 \pm 0.02$	0.05	-1.00	
$-\eta$ inter-calibration (stat.)	-0.07 ± 0.02	+0.001	+0.001	$+0.10 \pm 0.02$	0.01	-1.00	
Modelling (total)	0.31 ± 0.06	0.009	0.002	0.52 ± 0.04	0.26	-0.18	
– Modelling NP1	-0.30 ± 0.03	+0.006	+0.001	$+0.22 \pm 0.02$	0.07	-1.00	
– Modelling NP2	$+0.03 \pm 0.02$	+0.002	-0.000	$+0.14 \pm 0.02$	0.08	+1.00	
– Modelling NP3	-0.01 ± 0.02	-0.002	-0.000	-0.15 ± 0.02	0.07	+1.00	
– Modelling NP4	-0.01 ± 0.00	+0.000	+0.000	$+0.02 \pm 0.00$	0.00	-1.00	
$-\eta$ inter-calibration (model)	$+0.07 \pm 0.04$	+0.007	-0.001	$+0.43 \pm 0.03$	0.23	+1.00	
Detector (total)	0.05 ± 0.03	0.007	0.001	0.45 ± 0.04	0.20	-0.19	
– Detector NP1	-0.01 ± 0.03	+0.007	+0.001	$+0.45 \pm 0.02$	0.20	-1.00	
– Detector NP2	-0.05 ± 0.00	+0.000	+0.001	$+0.03 \pm 0.00$	0.02	-1.00	
Mixed (total)	0.02 ± 0.02	0.001	0.001	$+0.03 \pm 0.02$	0.01	-0.80	
– Mixed NP1	-0.02 ± 0.00	+0.000	+0.001	$+0.02 \pm 0.00$	0.00	-1.00	
– Mixed NP2	$+0.00 \pm 0.02$	+0.001	-0.000	$+0.02 \pm 0.02$	0.01	+1.00	
Single particle high- $p_{\rm T}$	$+0.00 \pm 0.00$	+0.000	-0.000	$+0.00 \pm 0.00$	0.00	+1.00	
Relative non-closure MC	$+0.00 \pm 0.02$	+0.001	-0.000	$+0.03 \pm 0.02$	0.02	+1.00	
Pile-up (total)	0.15 ± 0.04	0.001	0.002	0.04 ± 0.03	0.09	+0.03	
– Pile-up: Offset(μ)	-0.11 ± 0.02	-0.001	+0.001	-0.02 ± 0.02	0.07	+1.00	
- Pile-up: Offset(n_{vtx})	-0.10 ± 0.04	-0.000	+0.001	$+0.03 \pm 0.03$	0.04	-1.00	
Flavour (total)	0.36 ± 0.04	0.012	0.008	0.03 ± 0.03	0.20	-0.17	
– Flavour Composition	-0.24 ± 0.02	+0.006	-0.002	-0.02 ± 0.02	0.14	+1.00	
– Flavour Response	-0.28 ± 0.03	+0.011	-0.008	$+0.03 \pm 0.02$	0.14	-1.00	
Close-by jets	-0.22 ± 0.04	+0.005	+0.002	$+0.25 \pm 0.03$	0.01	-1.00	
<i>b</i> -Jet energy scale	$+0.06 \pm 0.03$	+0.000	+0.010	$+0.68 \pm 0.02$	0.34	+1.00	
Total (without bJES)	0.58 ± 0.11	0.018	0.009	0.75 ± 0.08	0.41	-0.23	

Measurement corr. in the world comb.

			CI	OF		D	0	ATI	LAS		CMS	
		l+jets	di-l	all jets	$E_{ m T}^{ m miss}$	l+jets	di-l	l+jets	di-l	l+jets	di-l	all jets
	<i>l</i> +jets	1.00										
CDF	di-l	0.49	1.00									
CDI	all jets	0.28	0.25	1.00								
	$E_{ m T}^{ m miss}$	0.31	0.27	0.17	1.00							
D0	<i>l</i> +jets	0.29	0.09	0.16	0.18	1.00						
	di-l	0.15	0.07	0.10	0.11	0.38	1.00					
ATI AS	<i>l</i> +jets	0.17	0.07	0.10	0.12	0.17	0.11	1.00				
111 11 10	di-l	0.30	0.12	0.17	0.19	0.24	0.15	0.64	1.00			
	<i>l</i> +jets	0.23	0.12	0.15	0.16	0.21	0.16	0.24	0.34	1.00		
CMS	di- <i>l</i>	0.09	0.05	0.05	0.08	0.08	0.07	0.16	0.24	0.64	1.00	
	all jets	0.15	0.06	0.09	0.10	0.13	0.08	0.15	0.23	0.57	0.75	1.00

Table 5: Correlations among the eleven input measurements. The elements in the table are labelled according to the experiment and the $t\bar{t}$ final state.

Impact of $\Delta \rho_{exp}$ in the world comb.

