Top production in Heavy Ion collisions

David d'Enterria Krisztian Krajczar Hannu Paukkunen

Based on arXiv:1501.05879, Physics Letters B 746 (2015) 64-72

Top LHC WG, 20-21 May 2015

Outline

- Introduction & motivations
- Cross section computations with MCFM
- Event selections, expected number of top events
- Pseudodata and nPDF constraints
- Conclusions

Top quarks in nuclear collisions

- ttbar: QCD interaction, at LHC dominated by g-induced processes
- Single-top: electroweak process sensitive the b-quark PDF

- Top-quark decays ($\tau \sim 0.1$ fm/c) before hadronization into W+b ($V_{tb} \sim 1$)
- t \rightarrow b + lepton + MET decay channel is promising even in Pb-Pb collisions
 - b-jet measurement in Pb-Pb at LHC: arxiv:1312.4198, PRL 113 (2014) 132301
 - W measurement in Pb-Pb at LHC: arXiv:1205.6334, PLB 715 (2012) 66, arXiv:1408.4674, Eur. Phys. J. C (2015) 75:23

Top quarks in nuclear collisions

- Three elementary particles yet **unobserved** in HI collisions
 - top, tau, H
- Top-quark pairs: constraints for **nuclear PDF**s?
- Top mass measurements: systematic uncertainty due to different color reconnection models
 - In HI collisions: top decays in the QGP, color fields are enhanced
- Highly-boosted top quarks with prolonged life time can radiate gluons before hadronization
 - Insight into heavy-quark energy loss in QGP and different time scales of HI collisions
 20.05.15
 D. d'E., K. K., H. P.

Top quarks in nuclear collisions

- Three elementary particles yet **unobserved** in HI collisions
 - top, tau, H

Main topic of this talk Top-quark pairs: constraints for **nuclear PDF**s?

- Top mass measurements: systematic uncertainty due to different color reconnection models
 - In HI collisions: top decays in the QGP, color fields are enhanced

Mostly relevant for FCC, see later

 Highly-boosted top quarks with prolonged life time can radiate gluons before hadronization

Insight into heavy-quark energy loss in QGP and different time scales of HI collisions
 20.05.15
 D. d'E., K. K., H. P.

nPDFs

• Collinear-factorization-based expectation:

• PDFs in nuclei differ from those in free nucleons \rightarrow nuclear PDFs

D. d'E., K. K., H. P.

LHC HI program

- HI data taken so far
 - Pb-Pb: √s_{NN}= 2.76 TeV, ~0.16 nb⁻¹ (2010, 2011)
 - p-Pb: √s_{NN}= 5.02 TeV, ~35 nb⁻¹ (2013)
 - p-p: √s = 2.76 TeV, ~5.4 pb⁻¹ (2011, 2013)
- HI data planned for 2015:
 - Pb-Pb: √s_{NN} = ~5.1 TeV, ~1 nb⁻¹
 - p-p: $\sqrt{s} = \sim 5.1 \text{ TeV}$, lumi=? (PbPb-equiv. = 43 pb⁻¹)
- Together with HL-HI-LHC (Run3 + Run4)
 - Pb-Pb: 10 nb⁻¹
 - p-Pb: 1 pb⁻¹

Theoretical setup

- MCFM v6.7 NLO event calculator
 - Parton densities:
 - Proton PDF: CT10 NLO (central + 52 error sets)
 - Pb nPDF: EPS09 NLO (central + 30 error sets)
 - Scale choices:

 $-\mu_{F} = \mu_{R} = m_{top}$ (for ttbar, single top t-channel and s-channel)

 $- \mu_{F} = \mu_{R} = p_{Tmin;b-jet} = 50 \text{ GeV (for tW assoc prod, } p_{Tmin;b-jet} \text{ veto is to avoid} double counting with ttbar)}$

• MCFM processes: 141, 161, 166, 171, 176, 181, 186 (total & fully-leptonic)

141	$t(\to \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\to b \ (p_6) + e^-(p_7) + \bar{\nu}(p_8))$	NLO
161	$t(\to \nu(p_3) + e^+(p_4) + b(p_5)) + q(p_6)$ [t-channel]	NLO
166	$\bar{t}(\to e^-(p_3) + \bar{\nu}(p_4) + \bar{b}(p_5)) + q(p_6)$ [t-channel]	NLO
171	$t(\to \nu(p_3) + e^+(p_4) + b(p_5)) + b(p_6))$ [s-channel]	NLO
176	$\bar{t}(\to e^-(p_3) + \bar{\nu}(p_4) + \bar{b}(p_5)) + b(p_6))$ [s-channel]	NLO
181	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + t(\nu(p_5) + e^{+}(p_6) + b(p_7))$	NLO
186	$W^+(\to \nu(p_3) + e^+(p_4)) + \bar{t}(e^-(p_5) + \bar{\nu}(p_6) + \bar{b}(p_7))$	NLO

D. d'E., K. K., H. P.

Cross sections

- Inclusive cross sections for top-pair and single top production
 - The computed cross sections are scaled by the mass numbers

System / Process:	top pair $(t\bar{t})$	single-top (t-channel)	single-top (s-channel)	single-top $(t W)$
(MCFM process)	(141)	(161,166)	(171,176)	(181,186)
Pb-Pb $\sqrt{s_{_{\rm NN}}}$ = 5.5 TeV	3.40±0.42±0.37 µb	$1.61{\pm}0.05{\pm}0.08~\mu{\rm b}$	110±4±6 nb	313±13±41 nb
p-Pb $\sqrt{s_{_{\rm NN}}} = 8.8 \text{ TeV}$	58.8±7.1±3.8 nb	$21.1{\pm}0.63{\pm}0.63$ nb	$1.09{\pm}0.03{\pm}0.04$ nb	5.26±0.21±0.37 nb

- Uncertainties:
 - Theoretical scale variations (factor of 2)
 - CT10 and EPS09 PDF errors added in quadrature
- NNLO/NLO K-factors would enhance cross sections by ~10%

ttbar cross sections

- Pb-Pb:
 - $\sqrt{s_{_{\rm NN}}} = 5.5 \text{ TeV} \sim 3.4 \text{ }\mu\text{b}$
- p-Pb:
 - $\sqrt{s_{_{\rm NN}}}$ = 8.8 TeV ~ 59 nb
- p-p:
 - $\sqrt{s} = 5.5 \text{ TeV} \sim 74 \text{ pb}$
 - $\sqrt{s} = 8.8 \text{ TeV} \sim 270 \text{ pb}$

- nPDF antishadowing increases $\sigma_{_{t\bar{t}}}$ by 2-8% wrt to (scaled) p-p
- NNLO/NLO K-factors would enhance cross sections by ~10%

20.05.15

D. d'E., K. K., H. P.

Single-top cross sections

- Pb-Pb:
 - $\sqrt{s_{_{\rm NN}}}$ = 5.5 TeV ~ 2 µb
- p-Pb:
 - $\sqrt{s_{_{\rm NN}}}$ = 8.8 TeV ~ 28 nb
- p-p:
 - $\sqrt{s} = 5.5 \text{ TeV} \sim 45 \text{ pb}$
 - √s = 8.8 TeV ~ 130 pb

- nPDF antishadowing increases $\sigma_{_{\text{single-top}}}$ by 2% wrt to (scaled) p-p
- NNLO/NLO K-factors would enhance cross sections by ~10%

20.05.15

D. d'E., K. K., H. P.

Theoretical $R_{AA}(y)$

- Nuclear modification factor: $R_{AA}(y) = \frac{d \sigma_{AA}/dy}{A^2 d \sigma_{pp}/dy}$
 - HI = independent superpositions of nucleon-nucleon collisions $\rightarrow R_{AA}(y) = 1$
- Theoretical nuclear modification factors in ttbar collisions at LHC
 - Function of the y of individual top and antitop quarks
 - Central curve and error bands: results with the EPS09 parametrization

Experimental measurement

- Experimental setup:
 - Gen-level analysis cuts, ATLAS/CMS-like conditions
 - Anti-kT jet algo, R=0.5
 - Charged leptons: |ŋ_{leptons}|<2.5, p_T>20 GeV
 - b-jets: |ŋ_{b-jet}|<2.5, p_T>30 GeV
 - Neutrinos: E_{miss}>40 GeV
 - b-jet tagging efficiency: 50%
 - For ttbar: only 1 b-jet is required: $50\% \rightarrow 75\%$
 - Estimated total efficiency acceptance in the fully-leptonic channel:
 - ttbar: ~30%, tW: ~20%
- Single-top t-channel and s-channel: large expected background, out of the scope of this work

Number of top quarks

• Number of top and antitop quarks per run after analysis selections

System	\sqrt{s}	$\mathcal{L}_{ ext{int}}$	Number of top+antitop quarks	Number of top+antitop quarks	
			$t\bar{t} ightarrow b \ \bar{b} \ \ell\ell \ \nu \nu$	$t W \to b \ell \ell \nu \nu$	
Pb-Pb	5.5 TeV	1 nb^{-1}	90	3	
p-Pb	8.8 TeV	$0.2 \ \mathrm{pb}^{-1}$	300	10	

• Expected p₋ reach: boosted top quarks with p₋>1 TeV not accessible at LHC

Constraints on nPDFs

- ~80% of the top pair production comes from gluon-gluon fusion
 - ttbar cross section to constrain gluon densities in Pb
- Demonstrate the effect of ttbar measurement on nPDFs:
 - Generate pseudodata
 - Use the pseudodata to constrain the nPDFs through the Hessian PDF reweighting technique
- Hessian re-weighting:
 - Also known as PDF profiling in HERAFitter, see arxiv:1503.05221
 - The error sets in Hessian PDF fits correspond to a certain increment in the global χ^2 function
 - Thus, the error sets parametrize the original χ^2 function
 - New PDFs are obtained by reweighting to the previous PDFs
 - See the details in JHEP 1412 (2014) 100

Constraints on nPDFs

- Total cross section: nPDF effects enhance σ_{tot} by 2-8% compared to pp
 - Hard to differentiate from overall normalization uncertainties
 - \rightarrow differential cross sections are needed
- Mimic experimental situation:
 - Use the distribution of the decay leptons (unaffected by final state interactions)
 - Statistical uncertainties from total number of events, and shape of $\sigma(y)$
 - Uncorrelated systematics: 5%
 - Normalization uncertainty: 5%
 - Pseudodata: $D_i = T_i^{EPS09} + \delta_i^{uncorr} r_i + \delta_i^{norm} r^{norm}$, where r factors are from Gaussians of σ =1 and µ=0
 - Covariance matrix: $C_{ij} = \delta_i^{uncorr} \delta_j^{uncorr} \delta_{ij} + \delta_i^{norm} \delta_j^{norm}$

Constraints on nPDFs (pseudodata)

- ttbar decay-lepton R_{AA} pseudodata and impact on the gluon nPDFs based on the full HI LHC program
 - ~10% reduction of uncertainties

Conclusions

- ttbar and single-top production cross sections in HI collisions
 - Computed with MCFM, NLO accuracy
 - Using CT10 free proton PDF and nuclear modifications from EPS09
- Top quark production is observable in nuclear collisions at the LHC
 - After typical analysis cuts in the leptons + b-jet final state: ~100 (PbPb) and ~300 (pPb) top and antitop quarks per LHC-year
 - To be compared with <100 top-quarks (in all decay channels) reconstructed by CDF and D0 at Tevatron during Run-1.
- Impact on the gluon nPDF of the y distribution of decay leptons:
 - Combining PbPb and pPb data, and ATLAS+CMS measurements \rightarrow 30% reduction of uncertainties
- Further information: arXiv:1501.05879, Physics Letters B 746 (2015) 64-72

Backup slides

Theoretical R_{AA}

- Theoretical nuclear modification factors in ttbar collisions at FCC
 - Function of the y of individual top and antitop quarks
 - Central curve: results with central EPS09 parametrization
 - Grey band: nPDF uncertainty

D. d'E., K. K., H. P.

Constraints on nPDFs

• ttbar pseudo-data, and improvements in the gluon nPDF

D. d'E., K. K., H. P.

Cross sections

• Inclusive cross sections for top-pair and single top production

System / Process:	top pair $(t\bar{t})$	single-top (t-channel)	single-top (s-channel)	single-top $(t W)$
(MCFM process)	(141)	(161,166)	(171,176)	(181,186)
Pb-Pb $\sqrt{s_{_{\rm NN}}}$ = 5.5 TeV	3.40±0.42±0.37 µb	$1.61{\pm}0.05{\pm}0.08~\mu{ m b}$	110±4±6 nb	313±13±41 nb
p-Pb $\sqrt{s_{_{\rm NN}}}$ = 8.8 TeV	58.8±7.1±3.8 nb	$21.1{\pm}0.63{\pm}0.63$ nb	$1.09{\pm}0.03{\pm}0.04$ nb	$5.26{\pm}0.21{\pm}0.37~\text{nb}$
Pb-Pb $\sqrt{s_{_{\rm NN}}}$ = 39 TeV	$302{\pm}33{\pm}12~\mu{ m b}$	54.6±1.6±2.2 μb	$1.31{\pm}0.05{\pm}0.08~\mu b$	24.2±1.6±1.3 μb
p-Pb $\sqrt{s_{_{\rm NN}}}$ = 63 TeV	$3.20{\pm}0.35{\pm}0.10~\mu b$	518±16±17 nb	$10.9{\pm}0.5{\pm}0.5$ nb	246±24±11 nb

- Uncertainties:
 - Theoretical scale variations, and CT10 and EPS09 PDF errors added in quadrature

Number of top quarks

• Number of top and antitop quarks per run after analysis selections

System	\sqrt{s}	$\mathcal{L}_{_{\mathrm{int}}}$	Number of top+antitop quarks	Number of top+antitop quarks
			$t\bar{t} ightarrow b \ \bar{b} \ \ell\ell \ \nu \nu$	$t \: W \to b \: \ell \ell \: \nu \nu$
Pb-Pb	5.5 TeV	1 nb^{-1}	90	3
p-Pb	8.8 TeV	$0.2 \ \mathrm{pb^{-1}}$	300	10
Pb-Pb	39. TeV	5 nb^{-1}	47 000	1 300
p-Pb	63. TeV	1 pb^{-1}	100 000	2 600

Top quark p₋ distributions

• Top quark p_{τ} distributions for events passing typical analysis cuts

D. d'E., K. K., H. P.