Observation of ttZ and measurement of ttW at CMS

TOP LHC WG meeting May 20, 2015

Andrew Brinkerhoff, Kevin Lannon, Anna Woodard

ttW and ttZ

- Rare, heavy SM processes
 - $\sigma(ttW) = 203 \text{ fb}, \sigma(ttZ) = 206 \text{ fb at } 8 \text{ TeV}$
- ttZ provides best direct measurement of the top-Z coupling
- Some new physics models enhance the ttW and ttZ cross sections without affecting Higgs or top production
- ttW and ttZ are backgrounds to ttH and to many new physics processes

Tree-level ttW and ttZ production at the LHC

Previous ttW and ttZ results

• Previous analyses by CMS and ATLAS at 7 and 8 TeV used a cut-based approach in the most sensitive channels, observed ttZ at \sim 3 σ significance and achieved \sim 2 σ sensitivity to ttW

ttZ signatures

- Best S/B in opposite-sign 2*l* (OS), 3*l* and 4*l* final states
- Expect a Z-mass lepton pair and b-jets, plus one or two leptons, missing energy, and / or light flavor jets

ttW signatures

- Best S/B in same-sign 2l (SS) and 3l final states
- Expect leptons, b-jets, and missing energy, plus an extra lepton or extra light flavor jets

Backgrounds

- Primarily ttbar, Z, WZ, and ZZ plus extra jets
- Prompt leptons from W/Z and non-prompt from b decay

6

Reconstructed objects

	1^{st} lepton $p_T > 20$ GeV, others $p_T > 10$ GeV				
Leptons	Muon $ \eta < 2.4$, electron $ \eta < 2.5$				
	Tight and loose cuts vs. non-prompt leptons*				
Jets	$p_T > 25 \text{ GeV}, \eta < 2.5, \text{ anti-}k_t (R = 0.5)$				
	Medium and loose b-tag (CSV)				
Missing E _T From all objects (MET) and selected objects (M					

* Prompt leptons are usually isolated from other objects in the event, and their tracks originate close to the collision vertex. Non-prompt leptons have nearby hadrons, and are displaced from the vertex.

Selection

	OS	ttZ	S	SS ttW		3 <i>l</i> ttW		3 <i>l</i> ttZ		4 <i>l</i> ttZ	
	ее/µµ	еµ	ee eµ µµ 31		31 31 41		31		ł <i>1</i>		
Leptons	Leptons Both loose		Both tight		2 SS tight		2 SS tight		All 1	oose	
	$ m_{ll} - 91 < 10$		$ m_{ee} - 91 > 10$		$ m_{ll} - 91 > 10$		$ m_{ll} - 91 < 10$		m _{ll} - 9	91 < 10	
Jets	5	≥6	3		≥4	1	≥ 2	3	≥4	≥	:1
B-tags	≥1 me	edium	≥2 loose ≥1 mediu		e ium	≥2 loose ≥1 medium		≥2 loose ≥1 medium		≥11	loose
Channels	2	2	6		2		2		МНЛ	[>30	
										1 Z→ll	2 Z→ll
											2

8

UNIVERSITY OF

NOTRE DAME

Event modeling

- Prompt: leptons from W or Z decays
 - ttbar and Z in OS events; WZ in SS; WZ and ZZ in 3*l*; ZZ in 4*l*
 - Estimated using MC; large uncertainty on extra jets and b-/c-jets
- Non-prompt (NP): leptons from quarks (semi-leptonic decay or jet fakes)
 - ttbar in SS events; ttbar and Z in 3*l*; ttbar, Z, and WZ in 4*l*
 - SS/31 estimated using data-driven fake rate from sideband; 4*l* using MC
- Charge flip (QF): leptons with mis-reconstructed charge
 - Opposite-sign ttbar and Z events can appear as SS events
 - Data-driven estimate from OS events

Non-prompt background

- To reject non-prompt leptons, apply cuts selecting well isolated leptons with tracks close to the collision vertex
- Derive fake rate from same-sign ttbar and 3*l* Z+fake events
 - Use events with leptons that fail cuts to model non-prompt background

10

'RE DAME

Event reconstruction

11

Event reconstruction

- Matching linear discriminant (MatchLD)
 - For each variable, get ratio of value for the correct jet(s) to value for any jet(s)

MatchLD: 31 ttZ

- Renormalize ratio histogram to have average value of 1.0 for events where the jets are correctly assigned
- Attempt every permutation of jets matched to the decay products of the ttbar system. Choose permutation with highest score = $log(\Pi_i ratio_i)$

MatchLD: 31 ttZ

- For events where both b's from the top and both q's from the W are reconstructed as jets, 75% of 4 jet and 40% of >=5 jet events have every jet correctly matched to its parent particle
- For correct matches, the average ratio is 1 (so the match score centers near 0)
- Partial matches (all but one jet matched) allow us to identify signal events where one of the quarks forms a jet outside our acceptance

3l ttZ BDT

• Train boosted decision tree with ttZ vs. WZ and ttbar MC

• Also include M_T of system, partial matches to ttZ system (ttZ $\rightarrow l^+l^- bl\nu bq$, ttZ $\rightarrow l^+l^- l\nu bqq$, ttZ $\rightarrow l^+l^- bl\nu qq$)

NIVERSITY OF

'RE DAME

Matching other systems

Full and partial	OS ttZ	SS ttW	3 <i>l</i> ttW	3 <i>l</i> ttZ
match scores	$ttZ \rightarrow l^+l^- bqq bqq$	$ttW \rightarrow l\nu \ bl\nu \ bqq$	ttW $\rightarrow l\nu bl^+\nu bl^-\nu$	$ttZ \rightarrow l^+l^- bl\nu bqq$
used in BDTs	$tt \rightarrow bl^+ \nu \ bl^- \nu$	$tt \to l_b qq bl\nu$	$tt \to l_b l\nu b l\nu$	

• Also use input variables, e.g. M_T of $t \rightarrow bl\nu$ from best matched $tt \rightarrow l_b qq bl\nu$

ttW BDT inputs

• Train lesses of desisions traces			
• Irain boosted decision trees	BDT inputs: same-sign ttw vs. tt	3 jet	\geq 4 jets
with ttW vs. ttbar MC	M_T of E_T^{miss} , leptons, and jets	1	1
	$E_{\rm T}^{\rm miss}$	4	2
• Iles a main of line another and	2^{nd} highest lepton p_{T}	6	3
• Use a mix of kinematic and	Match score for $t\bar{t} \rightarrow \ell_b j j b \ell \nu$	2	4
matching variables	Highest lepton $p_{\rm T}$	5	5
0	2 nd highest CSV value of a jet	8	6
• Kinomatic variables from no	tt matched top M_T from $b\ell\nu$	7	7
• Kinematic variables nom pr	Match score for $t\bar{t}W \rightarrow b\ell\nu \ bq$	9	8
of objects and jet b-tag (CSV)	Match score for $t\bar{t}W \rightarrow b\ell\nu \ bqq$	-	9
	tt matched top mass from $\ell_b qq$	3	-
 Event matching variables for 	Variables ranked by signal-backgr	ound s	eparation

- Event matching variables for ttW and ttbar systems
- Reconstructing events with a linear discriminant first allows for more input variables and better separation than a BDT alone, since BDTs are more limited by the statistics of training events

Andrew Brinkerhoff

18

twiki.cern.ch/twiki/bin/view/CMSPublic/

PhysicsResultsTOP14021

Results

	Cross se	ction (fb)	Signal	strength (μ)	Significance	
Channels	Expected	Observed	Expected	Observed	Expected	Observed
OS	206^{+142}_{-118}	257^{+158}_{-129}	$1.0\substack{+0.72\\-0.57}$	$1.25^{+0.76(+1.76)}_{-0.62(-1.16)}$	1.84	2.12
3ℓ	206^{+79}_{-63}	257^{+85}_{-67}	$1.0\substack{+0.42\\-0.32}$	$1.25^{+0.45(+1.02)}_{-0.36(-0.62)}$	4.55	5.11
4ℓ	206^{+153}_{-109}	228^{+150}_{-107}	$1.0\substack{+0.77\\-0.53}$	$1.11^{+0.76(+1.79)}_{-0.52(-0.86)}$	2.65	3.39
$OS + 3\ell + 4\ell$	206^{+62}_{-52}	242^{+65}_{-55}	$1.0\substack{+0.34 \\ -0.27}$	$1.18^{+0.35(+0.79)}_{-0.29(-0.51)}$	5.73	6.44

Cross section with 68% (95%) CL ranges and sensitivity for $t\bar{t}Z$.

	Cross se	ction (fb)	Signal	strength (μ)	Significance	
Channels	Expected	Observed	Expected	Observed	Expected	Observed
SS	203^{+88}_{-73}	414_{-112}^{+135}	$1.0\substack{+0.45\\-0.36}$	$2.04^{+0.74(+1.52)}_{-0.61(-1.05)}$	3.44	4.89
3ℓ	203^{+215}_{-94}	210^{+225}_{-203}	$1.0^{+1.09}_{-0.96}$	$1.03^{+1.07(+2.39)}_{-0.99(-1.92)}$	1.03	1.03
$SS + 3\ell$	203^{+84}_{-71}	382^{+117}_{-102}	$1.0\substack{+0.43\\-0.35}$	$1.88^{+0.66(+1.35)}_{-0.56(-0.95)}$	3.54	4.81

Cross section with 68% (95%) CL ranges and sensitivity for tTW.

PRELIMINARY

Results

• ttZ vs. ttW simultaneous cross-section measurement

PRELIMINARY

Constraints on new physics

• These ttW and ttZ cross section measurements place the best direct constraints certain dimension six operators to date

Constraints on new physics

- Some dimension six operators would specifically affect the vector and axial components of top-Z coupling
- Interpret ttZ cross section measurement in terms of best fit to, and limits on $C_{1,V}$ and $C_{1,A}$ 1.0 + SM +

$$\begin{aligned} & PRELIMINARY \\ & C_{1,V} = C_{1,V}^{SM} + \left(\frac{v^2}{\Lambda^2}\right) \operatorname{Re} \left[C_{\phi q}^{(3,33)} - C_{\phi q}^{(1,33)} - C_{\phi u}^{33} \right] \\ & C_{1,A} = C_{1,A}^{SM} + \left(\frac{v^2}{\Lambda^2}\right) \operatorname{Re} \left[C_{\phi q}^{(3,33)} - C_{\phi q}^{(1,33)} + C_{\phi u}^{33} \right] \end{aligned}$$

*From <u>http://arxiv.org/abs/1404.1005</u>

NIVERSITY OF

Summary

ttW and ttZ			ttW			ttZ			
measurements		Cross section		Significance		Cross section		Significance	
Data	Analysis	Theory*	Obs.	Exp.	Obs.	Theory*	Obs.	Exp.	Obs.
7 TeV	CMS ^[1]	-147 ⁺¹⁴ -16	-	-	-	137 ⁺¹² -16	280 ⁺¹⁵⁰ -110	?	3.3
(5 fb ⁻¹)	ATLAS ^[2]		-	-	-		< 710	-	-
	CMS ^[3]		170 ⁺¹¹⁰ -100	2.0	1.6		200 ⁺⁹⁰ -80	3.1	3.1
8 TeV (20 fb ⁻¹)	ATLAS ^[4]	203 +20	300 ⁺¹⁴⁰ -110	2.3	3.1	206 ⁺¹⁹ -24	150 ⁺⁵⁸ -54	3.4	3.1
	CMS <i>Preliminary</i>		382 ⁺¹¹⁷ -102	3.5	4.8		242 ⁺⁶⁵ -55	5.7	6.4

Preliminary documentation: twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP14021

* NLO cross sections with scale uncertainties from Garzelli et. al., JHEP 11 (2012) 056

BACKUP

Prospects for LHC Run II

- Running at 13 TeV all tt+X cross sections rise, some dramatically
- Plan to deliver 100 fb⁻¹ in Run II

NIVERSITY OF

- Expect ~900 tt+tt events per detector by 2018!
- Expect ~55k ttW and ~76k ttZ events per detector
 - ~550 ttW and ~760 ttZ in 2015 alone, if we're lucky
- For comparison, Tevatron Run I produced ~670 tt pairs per detector, and Run II produced ~72k tt pairs per detector
- Entering the era of precision studies of tt+X

Expected SM cross sections							
8 TeV 13 TeV							
tt	248 pb	816 pb					
ttW	203 fb	566 fb					
ttZ	206 fb	760 fb					
tt+tt	0.9 fb	9.2 fb					

<u>twiki.cern.ch/twiki/bin/view/</u> <u>LHCPhysics/TtbarNNLO</u> <u>dx.doi.org/10.1007/JHEP07(2014)079</u>

3l ttZ kinematics

• Pre-fit distributions with systematic uncertainties for signal-like events in the 3*l* ttZ channel (3 jets with BDT > 0.3 and \geq 4 jets with BDT > -0.2)

