Mechanical and Magnetic Load Effects in $\mathrm{Nb}_{3} \mathrm{Sn}$ Cable-in-Conduit Conductors

N. Mitchell

ITER IT, Naka JWS, 801-1 Mukouyama, Naka-machi, 3110193 Ibaraki, Japan, mitchen@itergps.naka.jaeri.go.jp

12 August 2002

STRAIN EFFECTS IN CABLES

2 SOURCES

>Longitudinal compression by differential contraction from jacket
$>$ Transverse loading by magnetic forces on strands (local and transmitted from other strands

MODELLING

$>$ Analytical approximation to longitudinal compression $>$ Analytical approximation to transverse loads
>Elasto-plastic finite element model of both
Variation of Critical Current and Temperature in $\mathrm{Nb}_{3} \mathrm{Sn}$ with Strain
11.5 T and 5 K
$\mathrm{Bc} 20 \mathrm{~m}=28 \mathrm{~T}, \mathrm{Tcom}=18 \mathrm{~K}, \mathrm{Co}=1.07 \mathrm{E} 10 \mathrm{~A} / \mathrm{mm} 2$

IMPACT

>Based on well-known strand behaviour

How to model strands in a cable?

Cable is a mess of curved strands, clamped at crossover points

Strands have 'wavy' shape \rightarrow allows bending to develop

Assume:
$>$ One wavelength for
waviness
>Strands clamped at changeover points

Because:

$>$ Most conservative for
bending (inflexible)
$>$ Represents average over
cable
$>$ No bending transmission to

other strands at cross-overs

ANALYTICAL MODEL OF A STRAND IN A CABLE COMPRESSED BY THE JACKET

Strand can be analysed as a 'strut' in compression

Strands in a cable have a 'wavey' shape

$$
v_{o}=a(1-\cos (\pi x / L))
$$

which is related to the average cable angle θ

$$
a=L / 2\left[\left(1 /(\cos \theta)^{2}\right)-1\right]^{1 / 2}
$$

$$
v=A \cos k x+B \sin k x-a-{ }^{k^{2} a \cos (\pi x / L)} /\left(k^{2}-\left(\pi / L^{2}\right)^{-M_{0}} / k^{2} E I-H x / k^{2} E I\right.
$$

with unknowns A, B, H, M_{o} which are determined from the boundary conditions at $\mathrm{x}=0, \mathrm{~L}$

$$
v=0, d v / d x=0
$$

the end displacement δ is found from $1 / 2 P \delta=1 / 2 \frac{P^{2} L}{A E}+\int_{0}^{L} \frac{M(x)^{2}}{2 E I} d x$ which can only be solved implicitly

BENDING STRAIN ON FILAMENTS IN STRANDS COMPRESSED BY A STEEL JACKET - ANALYTICAL ELASTIC MODEL

-strands are compressed by displacement at crossovers -allows bending of free length
 -direct compression reduced but +/- bending strain created -as the cable angle increases, so does the bending -average compression strain on filaments reduced

Bending Strain as a Function of Cable Twist Angle Elastic Model of a Bent Strand Under Longitudinal Compression (Simulating a Steel Jacket)

Bending Strain as a Function of Cable Twist Angle Elastic Model of a Bent Strand Under Longitudinal Compression
(Simulating a Steel Jacket)

BENDING STRAIN ON FILAMENTS IN STRANDS DUE TO TRANVERSE MAGNETIC LOADS - ANALYTICAL ELASTIC MODEL

-Strands, twisted with a pitch of $10-20 \mathrm{~mm}$, contain filaments
-In the cable the strands rest on other strands

- The transverse magnetic loads cause strand bending
-'Wavelength' of bending 4-6mm
Filament Tc, Jc vary due to bending strain
\rightarrow Possible current transfer between filaments
\rightarrow Low n in strands in cable

Linear Elastic Strand Strain Assessment

Take the case of 1 strand loaded by the magnetic forces and supporting 1 other strand

Load accumulation through the cable can give bending strains several times larger than this

Maximum bending moment

$$
\begin{aligned}
& M=(R L / 4)+B I L^{2} / 8 N \\
& \varepsilon_{m}=\left(R L+L^{2} B I / 2 N\right) r_{f} / \pi r^{4} E
\end{aligned}
$$

$B=12 T, I=50 \mathrm{kA}, \mathrm{N}=1152, \mathrm{r}_{\mathrm{f}}=0.3 \mathrm{~mm}, \mathrm{E}=150 \mathrm{GPa}$ and $(\mathrm{L} / 2)=5 \mathrm{~mm}==>\varepsilon_{\mathrm{m}}=0.13 \%$

Average transverse strain based on 'strand space' of $\left(\pi r^{2} /(1-\mathrm{v})\right)^{1 / 2}$

$$
\varepsilon_{t}=R L^{3} / 192 E I_{a}\left(1-v / \pi r^{2}\right)^{1 / 2}
$$

Cable Transverse Elasticity Assessment

All the strands are assumed to have an identical sinusoidal bending moment pattern $\mathrm{M}=\mathrm{M}_{\mathrm{o}} \sin 2 \pi x / \mathrm{L}$

Mechanical energy E_{M} due to the bending stored in a length $\mathrm{L} \quad E_{M}=M_{o}^{2} L / \pi E r^{4}$ Cable stored energy density $\mathrm{E}_{\mathrm{D}} \quad E_{D}=M_{o}^{2}(1-v) / \pi^{2} E r^{6}$
Effective transverse modulus of the cable is $\mathrm{E}_{\text {eff }}$ then also $E_{D}=B^{2} I^{2} / 8 E_{\text {eff }} b^{2}$
(average presure is $\mathrm{BI} / 2 \mathrm{~b}$)
Combining E_{D}

$$
M_{o}=\pi B I r^{3} / 2 b\left(E / 2 E_{e f f}(1-v)\right)^{1 / 2} \quad \varepsilon_{m}=\left(2 B I r_{f} / r b E\right)\left(E / 2 E_{e f f}(1-v)\right)^{1 / 2}
$$

Taking as parameters $\mathrm{B}=12 \mathrm{~T}, \mathrm{I}=50 \mathrm{kA}, \mathrm{b}=0.038 \mathrm{~m}, \mathrm{v}=0.36, \mathrm{r}_{\mathrm{f}}=0.3 \mathrm{~mm}, \mathrm{E}=150 \mathrm{GPa}$ and $\mathrm{E}_{\text {eff }}$ in the range $2-15 \mathrm{GPa}$ (measured) gives $\underline{\varepsilon}_{\mathrm{m}}$ in the range 0.05 to $0.12 \% \rightarrow$ on average each strand supports one other

Allow a peaking factor of 2 (linear pressure variation) and $\varepsilon_{\underline{m}}$ is in the range 0.1 to 0.24%

How Does Strand Bending Affect Superconductor Performance?

Filament strain distributions used in analysis of current redistribution

Electrical Model for Filament Non-Uniform Current Distribution

10 filament groups
Each group contains about 500-1000 physical filaments
Each group is electrically connected only to the group on each side
Current path can be through bronze or copper, conductivity G depends on strand structure
Expect G in the range 10^{9} to $10^{10}(\mathrm{Ohm} . \mathrm{m})^{-1}$ (not identical to conductivity of bronze or conductivity from time constant)

Use 10 mm length of strand, symmetric boundary conditions at ends (i.e. infinitely repeated bending)

Impact of Strain Magnitude and Strand Transverse Conductance on V-T Curve

Single Strand with Strain Variation between Filaments Effect of Internal Transverse Resistance Strain variation amplitude 0.0015 , mean strain -0.006 Linear variation in bending moment, 5 mm supports, 10 mm twist
E

Single Strand with Strain Variation between Filaments
Effect of Internal Transverse Resistance
Strain variation amplitude 0.001, mean strain -0.006
Linear variation in bending moment, 5 mm supports, 10 mm twist

(i) There is clearly a transverse conductance 'window' when the strand \mathbf{n} is reduced.
(ii) The reduction in strand n depends on the bending strain and transverse conductance but can easily be from 30 to under 10

Bending Strain Effects Both

 Critical Current and ' n 'Effect depends on $>$ wavelength of bending >magnitude of bending $>$ strand internal resistance $>$ strand twist >current transfer between strands

Effect of Filament Current Transfer on Overall Strand S/C Performance with Applied Bending Strain
Mean strain $\mathbf{- 0 . 3 2 \%}$, Strand jc $556 \mathrm{~A} / \mathrm{mm} 2$ at 12 T and 4.2 K

Elasto-Plastic Modelling of Strand Mechanical Behaviour

Differential expansion between strand/conductor components from 1000 K heat treatment to $\mathbf{4 K}$ creates complex strand stress system

Thermal Contraction Coefficients from 1000 K to 5 K for Nb3Sn, Bronze, Copper, Steel and Incoloy

Traditional (dating back $1 / 4$ century) model is the 'fully bonded' one

$$
\varepsilon_{f}=\frac{A_{c} E_{c}\left(\frac{\Delta l}{l_{c}}-\frac{\Delta l}{l_{f}}\right)-\sigma_{Y b z} A_{b z}-\sigma_{Y c u} A_{c u}}{A_{c} E_{c}+A_{f} E_{f}}
$$

f: filament
c:conduit

This model is very approximate, neglecting work hardening and only 1D. Strands in CIC conductors are also loaded by transverse magnetic loads and can bend.
\rightarrow object of the FE model is to develop a better strand mechanical model (but still approximate)

FINITE ELEMENT MODEL OF SINGLE STRAND

FEATURES

-Curved to model cabling -4 Components - Includes twist for strands in cable

Filaments

Hard Bronze

Copper and Soft Bronze

Working out the mechanical properties of the components ($\sigma-\varepsilon$) at temperatures $\mathbf{1 0 0 0} \mathbf{- 4 K}$ is difficult, very little data

Approximate strand build with 4 components
$\cdot \mathrm{Nb}_{3} \mathrm{Sn}$ filaments
-Copper
-Soft 'bronze'
-Hard 'bronze'
Stress-Strain Curves for Copper

Stress-Strain Curves for Bronze

Nb3Sn filaments assumed elastic over whole temperature range, with $\mathrm{E}=160 \mathrm{GPa}$.

COOLDOWN OF AN ISOLATED STRAIGHT STRAND

Filament Strain (principal, along strand) in Isolated Straight Strand after Cooldown

Bronze Stress (in global z direction along strand) in Isolated Straight Strand after Cooldown

Copper Stress (in global z direction along strand) in Isolated Straight Strand after Cooldown

COOLDOWN OF A STRAIGHT STRAND IN A STEEL JACKET 'FULLY BONDED' SIMULATION

Detail of the Filament Strain (principal, along strand) in a Straight Strand with a Steel Jacket after Cooldown
compared to an isolated strand
>bronze and copper strain reduced in magnitude
$>$ Nb3Sn filament strain increased
$>$ due to lower work hardening the 'strand in steel' is softer in transverse bending than the isolated strand

Strain along strand	Isolated Strand	Steel Jacket
Nb3Sn	-0.27%	-0.92%
Hard Bronze	0.46%	-0.23%
Copper	0.67%	0

SIMULATION OF MECHANICAL TESTS AND MODEL VERIFICATION

Tensile Test at 4K -Qualitative match between simulation and measurement -Different strands - $\sigma-\varepsilon$ cycles very sensitive to strand internal properties

Simulation of tensile test at 4K

Strain \%
Stress-Strain Curves for Reacted Nb3Sn Strands (0.8 mm diameter).

Material properties taken from literature but not usually self-consistent. Thermal contraction and $\sigma-\varepsilon$ measured on different compositions

Effect of Thermal Cycling on Overall Strand Contraction

-contraction 300-4K changes after first cooldown
-due to work hardening and plastic yielding
-easy to test, possible model
verification route

	First Cooldown	After warm up to 300K and cooldown again
$1000-$ $>4 \mathrm{~K}$	-1.0%	-1.0%
$300-$ $>4 \mathrm{~K}$	-0.23%	-0.3%

COOLDOWN OF A CURVED STRAND IN A CABLE IN A JACKET USING ELASTO-PLASTIC FE MODEL

Filament Strain (principal, along strand) in Curved Strand after Cooldown (left:overall, right: at left end)

Changes in Strand Strain after Cooldown Caused by Bending

Axial Strain \%

Cooldown of Curved Strand

	Incoloy	Steel
Nb 3 Sn	-0.27 to -0.23 (mid)	-0.62 to -0.44 (mid)
	-0.33 to -0.16 (end)	-1.08 to -0.03 (end)
Hard Bronze	0.39 to 0.58 (end)	-0.35 to 0.95 (end)
Copper	0.12 to 1.09 (end)	-0.69 to 1.63 (end)

Cooldown of Straight Strand

Strain along strand	Isolated Strand	Steel Jacket
Nb 3 Sn	-0.27%	-0.92%
Hard Bronze	0.46%	-0.23%
Copper	0.67%	0

In steel conductors: $>$ bending dominates $>$ due to work hardening, bending + plasticity completely changes strand mechanical properties

MAGNETIC LOADING ON CURVED STRANDS IN CABLES

\cdot Magnetic loading is applied either in or at 90° to the curvature plane
-Distributed force load corresponding to 35A and 13T on Nb3Sn
-Transmitted force load corresponding to magnetic load on half length at middle
-Reaction through supports at ends
-Tensile displacement at ends of $\mathbf{+ 0 . 1 5 \%}$

STRESSES AND STRAINS WITHIN STRANDS IN A CURRENTCARRYING CABLE

Filament Strain along curved strand after cooldown, with full magnetic loads 90° to curvature plane: left end and middle

SUMMARY OF STRAINS WITHIN CURVED STRANDS IN A CURRENT-CARRYING CABLE

Axial Strain \%

Magnetic Loads (at 90°) 10 mm strand

	Incoloy	Steel
Nb3Sn	-0.39 to 0.01 (mid) -0.50 to 0.34 (end)	-0.68 to -0.35 (mid) -0.95 to 0.15 (end)
Copper	0.09 to 1.52 (end)	-0.56 to 1.53 (end)
Bronze	0.23 to 1.16 (end)	-0.28 to 0.90 (end)

Nb3Sn after Magnetic Load Removal (compared to before loading)	-0.39 to 0.0 (end) (compare -0.33 to -0.16 (end))	-1.17 to 0.23 (end) (compare -1.08 to -0.03 (end))

Displacements under Magnetic Loads mm
displacements at 90° to curvature plane

	Incoloy	Steel
5 mm Strand	0.017	0.011
10 mm Strand	0.064	0.052
10 mm Strand after unloading	0.040	0.027

Effect of Load Cycling on Filament Strain

>Most plastic deformation occurs on first cycle $>$ Most deformation is permanent $>$ Small cyclic component

Cyclic Stress Adjustment Under Transverse Magnetic Loads, Steel Jacket with Curved Strand, Loads at 90° to Curvature Plane, Maximum and Minimum Filament Strain at End

PREDICTED SUPERCONDUCTING PERFORMANCE OF STRANDS IN CABLES IN COILS: LARGE CABLE

Predicted Performance -assume current transfer between filaments -assume no current transfer between strands in cable -assume 13T and 4.2K -average jc over filament region assuming linear stress variation min-max to give 'effective' thermal strain

	Incoloy		Steel	
	90° Loads	In-plane Loads	90° Loads	In-plane Loads
Fully Bonded Thermal Strain	-0.36%		-0.89%	
Thermal strain on cooldown	-0.24%		-0.54%	
Derived Effective Thermal Strain in operation (corrected by -0.15\%)	-0.38%	-0.47%	-0.62%	-0.68%

Curvature at 90° to Load

Curvature in plane of Load

Filament Strain Distribution with Curved Strands and Steel/Incoloy Jackets.

CONCLUSIONS 1

Effect of Jacket Material

Curvature due to cabling has dominant effect on strand strain even with small cable angle

STEEL JACKETS

Large strand bending \rightarrow high work hardening of copper, bronze Some relaxation of thermal compression (by up to 0.2% from 'fully bonded' value), strands stiffened against transverse loads

INCOLOY JACKETS

Small strand bending \rightarrow copper, bronze stay soft, deflect more under transverse loads

CONCLUSIONS 2

Cycling and Permanent Deformation

With both STEEL and INCOLOY more than 50% of the bronze and copper strain is plastic, so strand deformation after first magnetic load is at least half permanent.

Cycling equilibrium reached after a few cycles, typically 66\% of deformation due to magnetic loads is permanent

Longer term cycling effects seen in measurements probably due to friction based strand position adjustment in cable

CONCLUSIONS 3

Effect of Transverse Loads

Transverse loads cause extra strain in cable, simulations suggest up to -0.2 to -0.3% with Incoloy, -0.1 to -0.2% with steel. Fits observations on model coils

STEEL JACKETS

Stiff strands \rightarrow smaller deflection under magnetic loads \rightarrow smaller effect on filament strain compared to thermal bending strain

INCOLOY JACKETS

Soft strands \rightarrow larger deflection under magnetic loads \rightarrow resulting magnetic bending strains dominate over thermal bending strains \rightarrow apparent extra degradation

CABLE SIZE

Smaller cables show smaller effect as load accumulation, cable angle less

CONCLUSIONS 4

Filament Damage and Fatigue

With both STEEL and INCOLOY tensile strains on the filaments exceed +0.2\% when local damage could occur on some filaments

Due to copper/bronze work hardening, cyclic loads are small \rightarrow no fatigue damage effect

