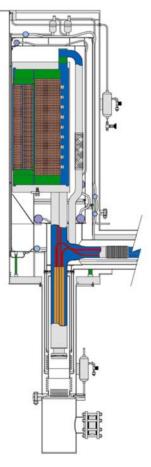
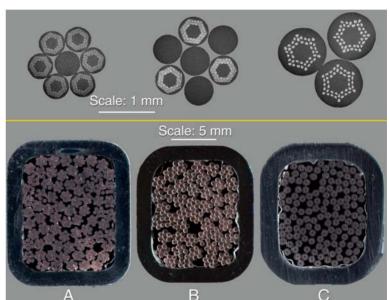
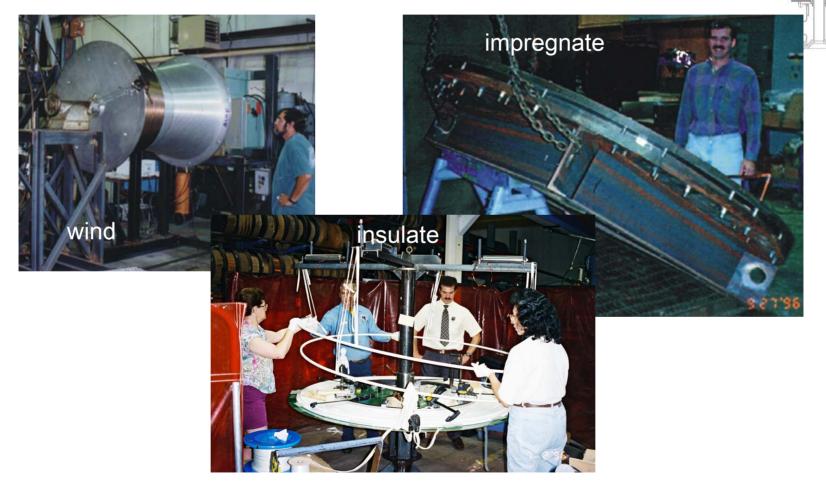
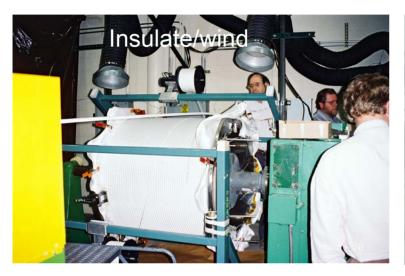

Analysis of Observations during Operation of the NHMFL 45-T Hybrid Magnet System

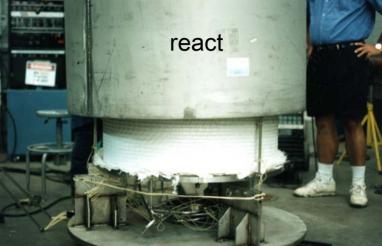

CHATS Workshop Kernforschungszentrum Karlsruhe 16-18 September 2002 J.R. Miller, Y.M. Eyssa, S.D. Sayre, and C.A. Luongo

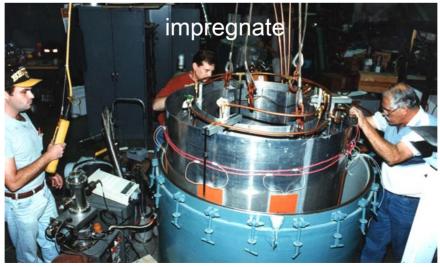


Superconducting outsert coils and conductors






NbTi-coil manufacture



Nb₃Sn-coil manufacture

CHATS '02 16-18 Sept. 2002

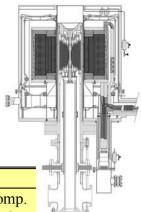
Outsert assembly

General features of the superconducting outsert

Configuration	3 series-connected subcoils			
Nominal operating current (kA)		10		
Individual coil characteristics:	Coil A	Coil B	Coil C	
Type of winding	Layer, wind-and-react	Layer, wind-and-react	Double pancake	
Conductor type	Nb ₃ Sn CICC	Nb ₃ Sn CICC	NbTi CICC	
Number of turns	303	376	1025	
	(6 layers x approx. 51	(7 layers x approx. 54	(29 pancakes x 35	
	turns/layer)	turns/layer)	turns/pancake, plus	
			crossovers and joints)	
Length of conductor (m)	759	1186	4574	
Inner diameter of windings (mm)	710	908	1150	
Outer diameter of windings (mm)	888	1115	1680	
Height of windings (mm)	869	868	992	
Winding pack current density (A/mm ²)	39.6	44.3	38.6	
Maximum field at the windings (T)	14.1 ^a	10.9 ^a	8.4 ^a	
	15.7 ^b	11.7 ^b	8.5 ^b	
Field contribution at center (T)	3.3	3.6	7.4	
(individual coils)				
Field contribution at center (T)		14.3		
(combined coils)				
Combined inductance (H)		1.96		
Combined stored energy (MJ)		98		

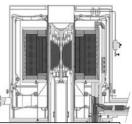
^a Insert and outsert on, both at full current

^b Outsert only at full current



Outsert conductor parameters

Parameter	Coil A	Coil B	Coil C	
Cable patterns $5 \ge 5 \ge 3 \ge (6 \text{ Nb}_3 \text{Sn comp.})$		5 x 3 x 3 x (3 Nb ₃ Sn comp.	5 x 3 x 3 x (3 NbTi comp.	
	+ 1 Cu wires, 0.433-mm	+ 4 Cu wires, 0.513-mm	wires, 0.810-mm dia.)	
	dia.)	dia.)		
Cable cross-section	79.44 mm ²	66.22 mm^2	70.49 mm^2	
(projection \perp long axis of	(54.25 mm ² Cu,	(55.66 mm ² Cu,	(59.14 mm ² Cu,	
conductor)	$25.19 \text{ mm}^2 \text{ non-Cu}$	10.56 mm ² non-Cu)	11.35 mm^2 non-Cu)	
Foil wrap cross-section	2.51 mm^2	2.33 mm^2	1.89 mm^2	
Void cross-section	50.30 mm ²	42.55 mm^2	36.50 mm^2	
Jacket cross-section	80.20 mm ²	72.86 mm^2	89.30 mm ²	
	(16.22 mm x 13.71 mm,	(15.25 mm x 12.97 mm,	(15.85 mm x 13.74 mm,	
	1.64-mm wall, 3.40-mm	1.64-mm wall, 4.01-mm	2.00-mm wall, 4.77-mm	
	outer corner)	outer corner)	outer corner)	
Projected critical current	15.8 kA ^a	14.7 kA ^a	21.7 kA ^b	
(at field, temperature, and	(at 15.7 T, 1.8 K, and 0.25%	(at 11.7 T, 1.8 K, and 0.25%	(at 8.5 T and 1.8 K)	
strain of normal operation)	jacket strain)	jacket strain)		
Projected current-sharing	4.34 K	4.86 K	4.01 K	
temperature	(at 10 kA, 15.7 T, and	(at 10 kA, 11.7 T, and	(at 10 kA and 8.5 T)	
(at current, field and strain	0.25% jacket strain)	0.25% jacket strain)		
of normal operation)				


^a Extrapolated from measurements reported in Ref. [7].

^b Extrapolated from measurements reported in Ref. [6].

Critical current measurements

Single wire on substrate

Developmental CICC

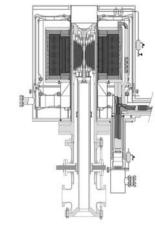
Witness CICC

CHATS '02 16-18 Sept. 2002 J.R. Miller *et al.*, "Characterization of High-Current Nb3Sn Cable-in-Conduit Conductors vs Applied Sheath Strain," in *Advances in Cryogenic Engineering*, vol. 44B, U. Balachandran *et al.*, Eds., New York:Plenum Press, 1998, pp. 967-974.

History of early high-current operations

Date	Max. Current	Ramp time	Hold time	Result
9 Dec. 1999	10 kA	80 min.	40 min.	Dump to test protection circuit.
10 Dec. 1999	10 kA	100 min.	2 hr.	Combined test with RI, 44.2 T. Normal ramp down.
11 Dec. 1999	10 kA	80 min.	2 hr.	Normal ramp down.
12 Dec. 1999	10 kA	100 min.	7 hr. 30 min.	User service, normal ramp down.
12 Dec. 1999	10 kA	80 min.	17 min.	Quench, RI reversed.
22 June 2000	10 kA	120 min.	8 min.	Crowbar, VCL over voltage.
26 June 2000	10 kA	30 min.	2 hr. 30 min.	Combined test with RI, 45.2 T. Normal ramp down.
3 July 2000	10 kA	30 min.	50 min.	Normal ramp down.
6 July 2000	10 kA	30 min.	8 hr.	User service, normal ramp down.
7 July 2000	10 kA	30 min.	7 min.	Dump! Quench or instrumentation glitch?
10 July 2000	10 kA	30 min.	5 min.	Unprotected quench.
2 Aug. 2000	9.5 kA	6 hr. 30 min.	0 min.	Slow ramp to assess damage. Quench.
4 Aug. 2000	9 kA	7 hr.	2 hr.	Slow ramp. Assess new operating margins. Normal ramp down.

Based on results from the latter run, the superconducting outsert was approved to operate continuously at 8 kA for service to NHMFL users.


Instrumentation

- Since the 45-T Hybrid is a facility for scientific research rather than a test article for magnet development, there is no instrumentation internal to the magnet windings
- There are, however, voltage taps attached to every layer and every pancake via the helium flow connections
- And, there are calibrated temperature sensors in the HeII reservoir
- These are adequate for providing an understanding the magnet's performance

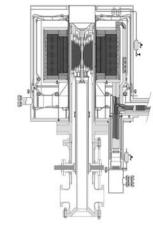
Temperature response in the HeII reservoir to 0-5-0kA outsert-current ramps

Conversion of temperature-response data to corrected energy deposition

After cessation of heating, temperature is observed to recover according to

$$T(t) = (T_{init} - T_{base})e^{-\left(\frac{t}{\tau}\right)} + T_{base}$$

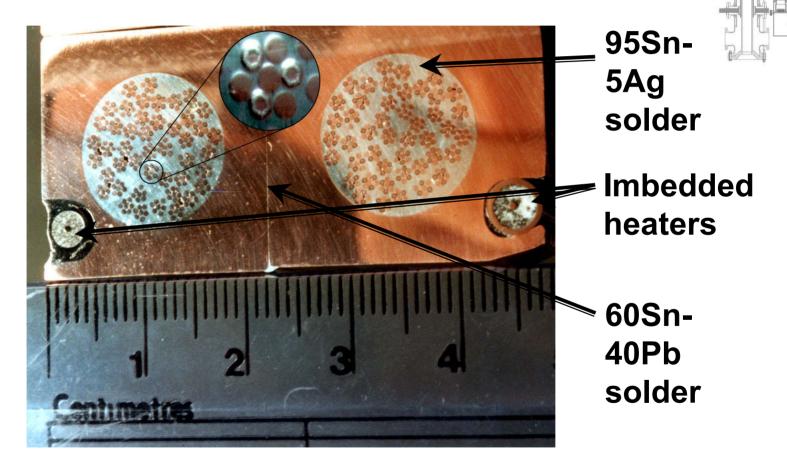
as if the reservoir is connected to a sink with temperature T_{base} . In that case, the instantaneous heat flow at temperature T is


$$\dot{Q}_{out}(T) = C_{p,HeII}(p,T)V_{reservoir} \frac{T - T_{base}}{\tau}$$

and the corrected heat deposition in the reservoir causing a rise from T_o to T is

$$Q_{corrected}(T,t) = V_{reservoir} \int_{T_0}^T C_{p,HeII}(p,T) dT + \int_0^t \dot{Q}_{out} dt$$
$$-\int_0^t I^2 R(I) dt$$

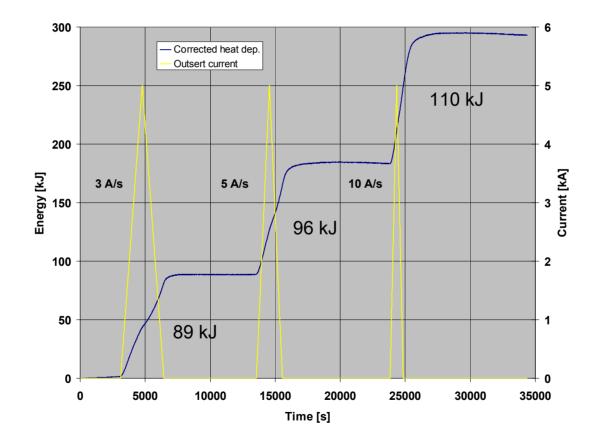
16-18 Sept. 2002

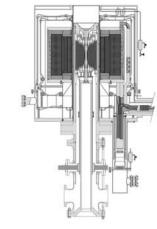


Corrected energy deposition (continued)

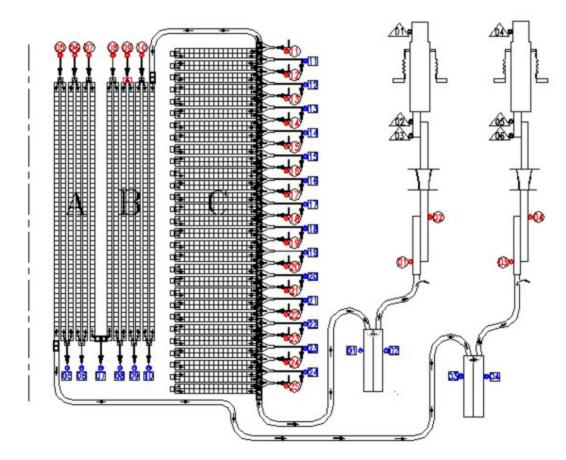
- on
- The last term in the previous relation is a correction for joint heating
- *R(I)* represents the total joint resistance corrected for magneto-resistance
- The magneto-resistance correction is relatively simple because 30 of the 38 joints in the HeII space are on the outer diameter of Coil C, where the field for any particular current is the same within about 10%
- All joints are of similar construction with resistance determined in a relatively simple way by properties of constituents: Cu, SnAg, and SnPb

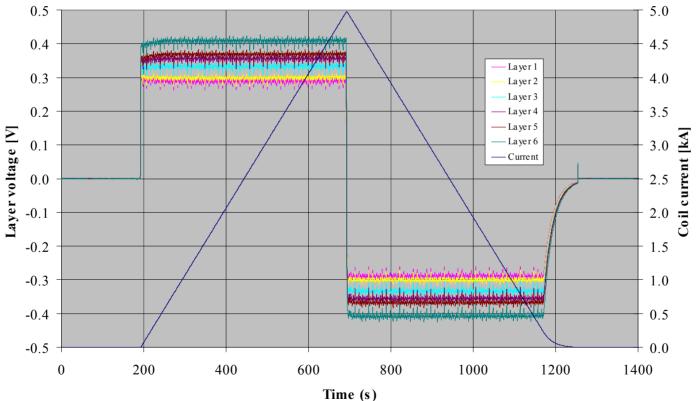
A typical joint



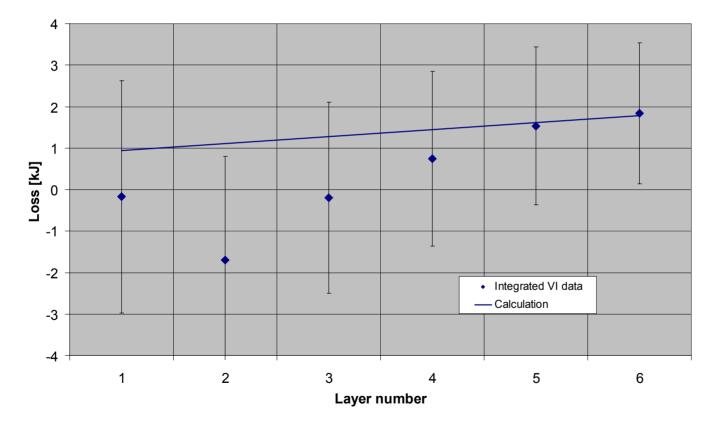

$$R_{joint} \sim 0.45 \text{ n}\Omega \text{ at } B = 0$$

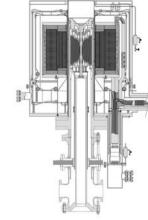
CHATS '02 16-18 Sept. 2002

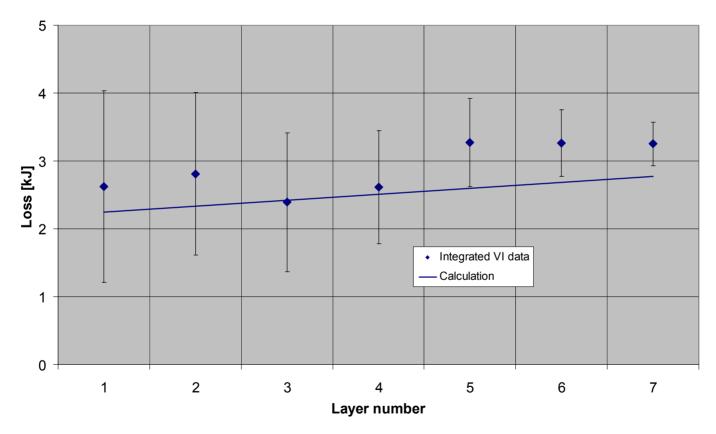

Corrected energy deposition for 0-5-0 kA outsert-current ramps

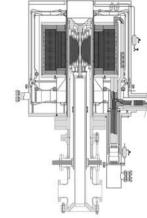


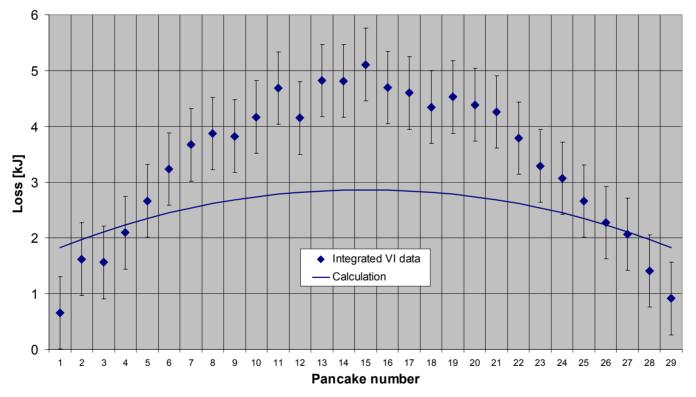
Joints, flow connections, and voltage taps on the outsert

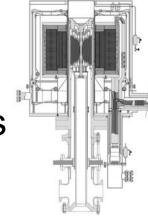


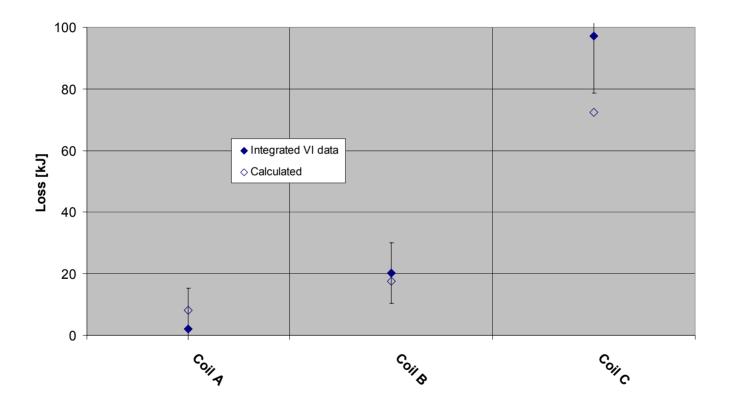

Layer voltages for Coil A during 0-5kA-0 ramp at 10 A/s


Losses due to current in Coil-A layers

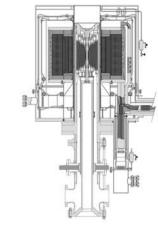



Losses due to current in Coil-B layers




Losses due to current in Coil-C pancakes

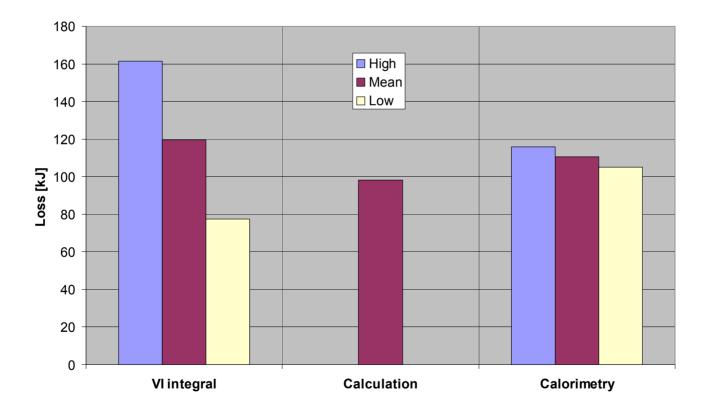
Distribution of losses generated by individual coils

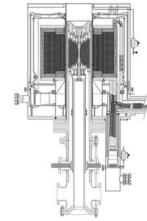


Calculated hysteresis and coupling losses for typical Hybrid operations

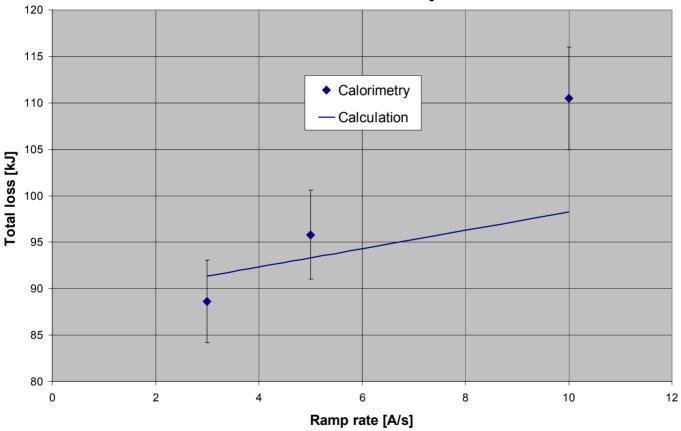
Linear ramp up or down	I _{out,max}	Q_{hyst}	<i>Q_{coup}</i> [kJ] Ramp rate [A/s]			
•	[kA]	[kJ]	2	3	5	10
in current at	0	0.00	0.00	0.00	0.00	0.00
various rates	0.5	5.60	0.10	0.15	0.25	0.49
	5	44.20	0.98	1.48	2.46	4.92
	8	58.10	1.57	2.36	3.94	7.87
	10	62.10	1.97	2.95	4.92	9.84

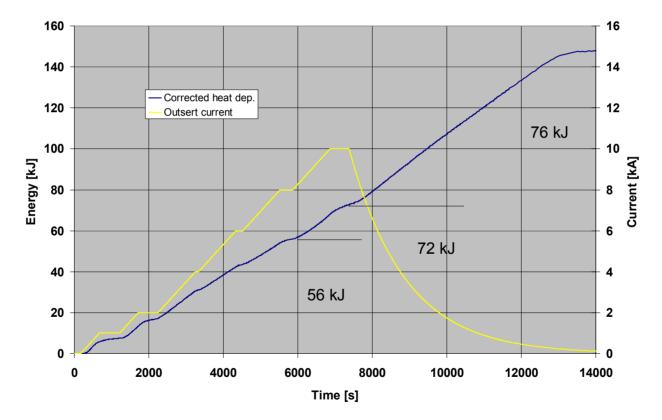
Exponential dis-			Q_{coup}	[kJ]
charge for typical	Iout, max	Q_{hyst}	$ au_{disch}$	[s]
• •	[kA]	[kJ]	4.4	700
time constants	0	0.00	0.00	0.00
(dump and crowbar)	0.5	5.60	2.78	0.02
· · · /	5	44.20	277.65	1.76
	8	58.10	710.79	4.50
	10	62.10	1110.61	7.03

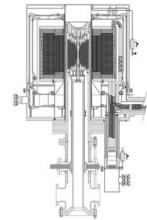


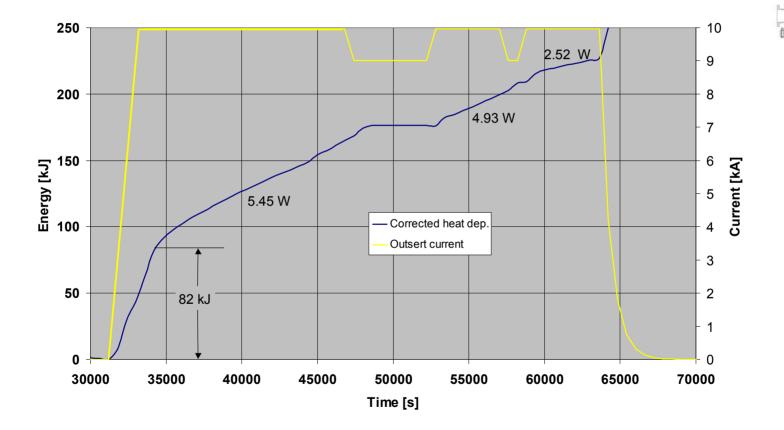

Basis of loss calculations

- *J_C(B,T)* as given in "Outsert conductor parameters" table
- *d_{eff}* of 42, 49, and 50 μm (Coils A, B, and C, resp.)
- *τ_{cable}* of 30,30, and 160 ms (Coils A, B, and C, resp.)


Alternate determinations of the total loss for 0-5kA-0 ramp at 10 A/s

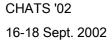



Losses for 0-5kA-0 ramps at different ramp rates


Corrected energy deposition for 0-10kA ramp at 2 A/s followed by crowbar with 700s time constant

Corrected energy deposition during a 0-10kA ramp and 8h hold

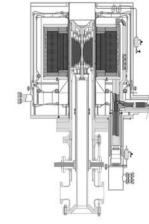
Index losses

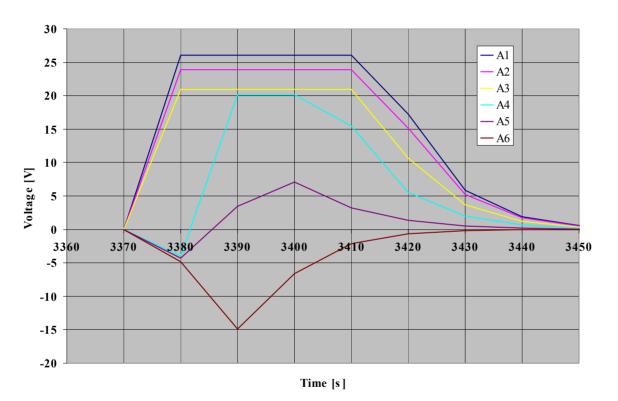

Index heating occurs near the critical current I_0 according to

$$\dot{Q}_{index} = I^{n+1} E_0 \int \frac{dl}{I_0^n(B,T)}$$

where E_0 is the criterion for establishing I_0 and the index *n* characterizes the rate of rise of voltage with increasing current. $I_0 = I_0(B,T)$ and the integration is over a length of conductor in the windings with local variations of both.

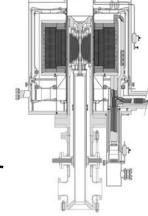
In tests of the Hybrid CICCs, $E_0 = 50 \mu$ V/m and n = 15.


Appreciable index heating can be expected in the Hybrid outsert for elevated temperatures (e.g, \sim 4 K in Coil A).

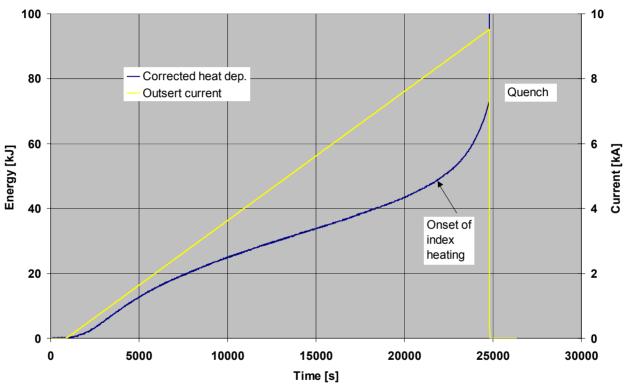

Index heating: key in the process leading to quenches during early phases of operation

- Limited cooling afforded by static Hell in long channels locally exceeded by transient losses
- Local temperature elevation into Hel range
- Locally reduced critical current and low-level heating by index losses
- Slow runaway toward quench due to drastically reduced heat transport of Hel
- This is a delicate balance affected by:
 - field from insert,
 - prior operations, or
 - starting temperature of Hell reservoir

Unprotected quench, 10 July 2000



Coincidence with a malfunction of the quench-detection computer resulted in sparse data


Unprotected quench: what we know

- The quench occurred after being at full current (10 kA) for about 4 minutes.
- Only Coil A developed resistance.
- Resistance in Coil A developed most quickly in the first 3 layers.
- A clear indication of resistance in the 4th and 5th layers was not evident until 10 s or more after the quench was fully developed.
- Resistance was never clearly evident in the 6th layer.
- The development of resistance was such that the discharge quickly became exponential in character with a time constant of about 10 s.
- Analysis indicates the "hot-spot" temperature was 500K or greater.

Outsert performance following unprotected quench

- The apparent net result is essentially a reduction of the index from around 15 to about 5.
- Index heating at 8 kA or below is negligible.
- On-axis contribution 11.4 T, max field 12.5 T

CHATS '02 16-18 Sept. 2002

Summary

- Measurements of total ac losses are comparable to calculated values
- Electrical measurements during triangular ramps provide some confidence in the spatial distribution of calculated losses
- AC losses do not appear to be substantially different than assumed during the design phase
- Calorimetric data from high-current ramps suggest that limited cooling during fast charges and the onset of index heating results in a delicate balance between stable operation and slow, thermal runaway.
- This may explain the quenches observed in the early phases of operation
- A better assessment of this possibility requires more detailed thermal analysis, which is the subject of a companion paper at this workshop