Synthetic Analysis of Electrical **Coupling Parameters in SC Cables** L. Bottura^(*), M. Breschi ^(*), C. Rosso^(*) (*)CERN, Switzerland (^{**)}University of Bologna, Italy (^{*})CryoSoft, France CHATS, FzK, Karlsruhe, September 2002

Overview

- Motivation
- Cable geometry generation and modeling
- Electrical coupling parameters
 - inductance matrix calculation
 - conductance matrix calculation
- Validation of the model
- Examples and applications
- Conclusions and perspective

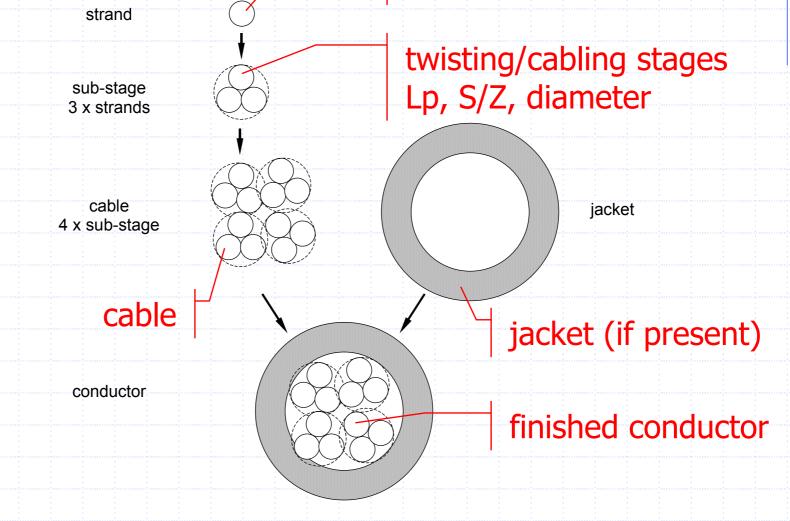
Motivation - 1

The electro-dynamic behavior of SC cables is governed by the electrical characteristics of the assembled strands strand inductance matrix interstrand conductance parallel resistance (V-I characteristic) knowledge of above parameters is mandatory to understand current distribution and re-distribution

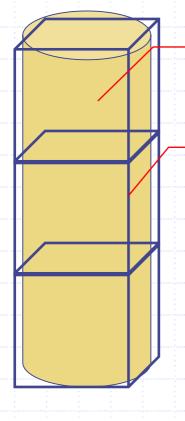
Motivation - 2 \bigcirc $l_1 dx$ $v_1^{ext} dx$ $V_1 + dV_1$ $r_1 dx$ V_1 $i_1 + di_1$ 1_{1 @} $g_{12}dx$ $l_2 dx$ $v_2^{ext}dx$ $V_2 + dV_1$ $r_2 dx$ V_2 \rightarrow $i_2 + di_1$ 12 g₁₃dx $g_{23}dx$ $l_3 dx$ $v_3^{ext}dx$ $V_3 + dV_3$ r₃dx V_3 $i_3 + di_3$ iz a dx parallel inductance $\mathbf{gl} \frac{\partial \mathbf{i}}{\partial t} + \frac{\partial^2 \mathbf{i}}{\partial x^2} + \mathbf{gri} - \mathbf{gv}^{ext} = 0$ resistance inter-strand conductance

Cable geometry

basic component (strand)



General Current Elements

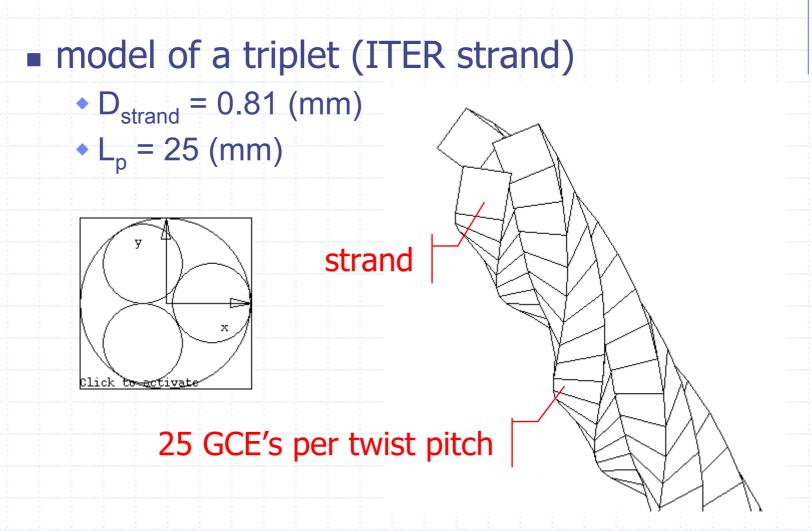


ideal, round strand geometry

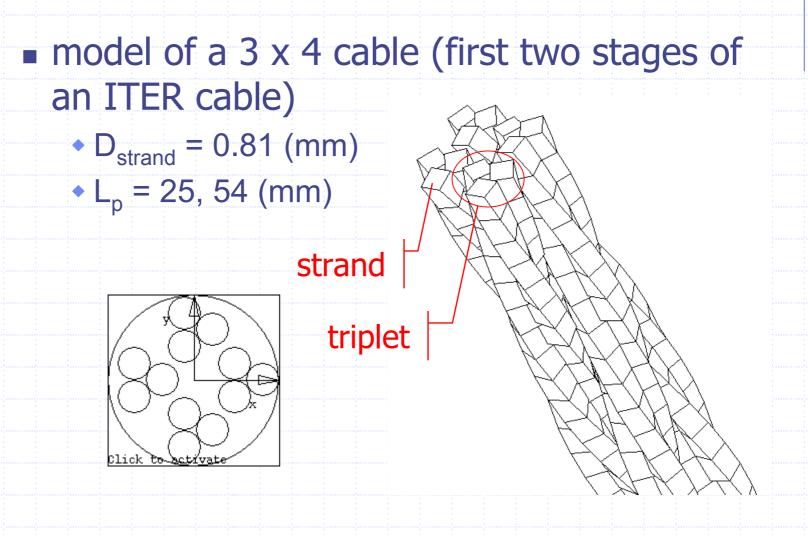
8-nodes isoparametric hexahedron used for discretization

physical space

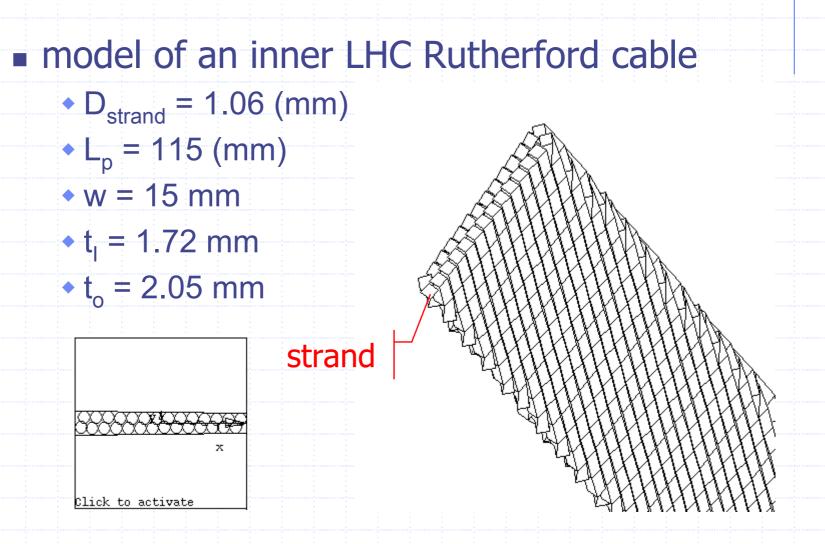
Cable model example - 1



Cable model example - 2



Cable model example - 3



Inductance calculation - 1

definition of the inductance coefficient L_{ij}:

$$L_{ij} = \frac{\mu_0}{4\pi} \int_{V_i V_j} \frac{\mathbf{j}_i \bullet \mathbf{j}_j}{|\mathbf{r}_{PQ}|} dV_j dV_i$$

j: current density such that strand current is 1 A

using the scalar vector potential A_i:

$$\mathbf{A}_{j} = \frac{\mu_{0}}{4\pi} \int_{V_{j}} \frac{\mathbf{J}_{j}}{\left|\mathbf{r}_{PQ}\right|} dV_{j}$$

the inductance is given by:

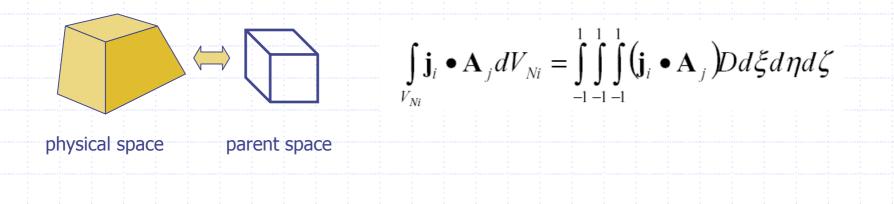
$$L_{ij} = \int_{V_i} \mathbf{j}_i \bullet \mathbf{A}_j dV_i$$

Inductance calculation - 2

the volume integral is performed over all GCE's:

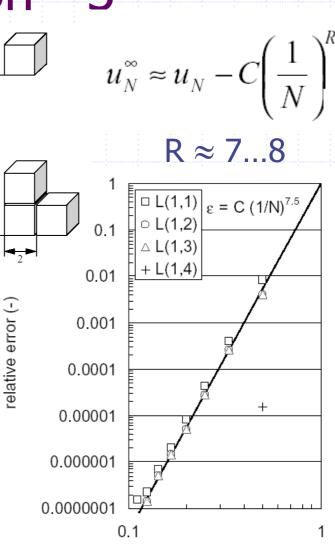
$$L_{ij} = \int_{V_i} \mathbf{j}_i \bullet \mathbf{A}_j dV_i = \sum_{N_i} \int_{V_{N_i}} \mathbf{j}_i \bullet \mathbf{A}_j dV_{N_i}$$

using Gaussian integration in parent space



Inductance calculation - 3

the number of Gauss points N used for numerical integration is chosen adaptively, based on the error estimate numerical convergence is accelerated through extrapolation to $N \rightarrow \infty$ (Richardson deferred approach to the limit)



1/N (-)

10

Conductance calculation - contact

simple contact model for neighbouring strands. Contact is defined when:

 \mathbf{d}_2

 d_1

distance

distance < $FF^*(d_1+d_2)/2$

• FF is a *fudge factor* ≈ 1 :

Line and cross contacts

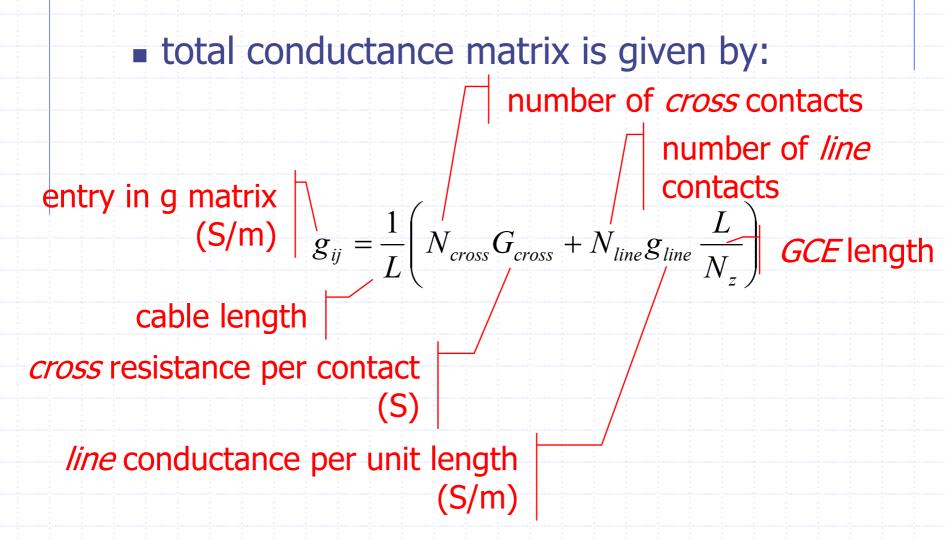
 different types of contacts are possible:
 line contact (R_{line}) if both: d_{upper} < FF*(d₁+d₂)/2 d_{lower} < FF*(d₁+d₂)/2

upper

lower

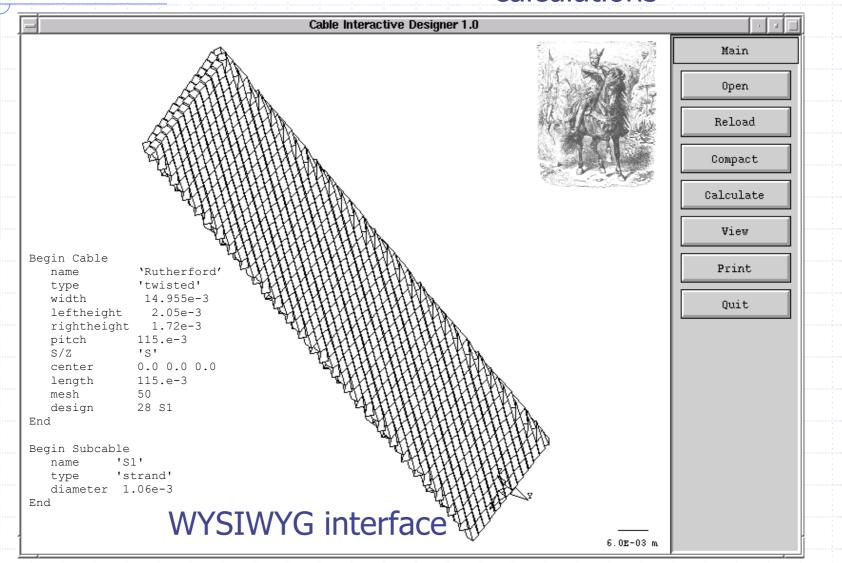
• cross contact (R_{cross}) if either: $d_{upper} > FF*(d_1+d_2)/2$ $d_{lower} < FF*(d_1+d_2)/2$ or: $d_{upper} < FF*(d_1+d_2)/2$ $d_{lower} > FF*(d_1+d_2)/2$

Conductance matrix calculation



Model (CID v1.0)

event-driven GUI for: - model loading - display - calculations



Model validation - 1

 comparison of numerical calculations to inductance calculation performed via a 6-D adaptive integration (Gauss method):

$$L_{ij} = \frac{\mu_0}{4\pi} \int_{V_i V_j} \frac{\mathbf{j}_i \bullet \mathbf{j}_j}{|\mathbf{r}_{PQ}|} dV_j dV_i$$
$$L_{ii} = \frac{\mu_0}{4\pi} \int_{V_i V_j} \frac{\mathbf{j}_i \bullet \mathbf{j}_j}{|\mathbf{r}_{PQ}| + \varepsilon} dV_i dV_i$$

regularization parameter for self inductance $\epsilon < 10^{-9}$

and it can be shown that:

$$\lim_{\varepsilon \to 0} \iint_{V_i V_j} \frac{\mathbf{J}_i \bullet \mathbf{J}_j}{\left|\mathbf{r}_{PQ}\right| + \varepsilon} dV_i dV_i = \iint_{V_i V_j} \frac{\mathbf{J}_i \bullet \mathbf{J}_j}{\left|\mathbf{r}_{PQ}\right|} dV_i dV_i$$

Model validation - 2

- analytical calculation of strand geometry and coordinate transformation Jacobians
- strand have round cross section

see for details:

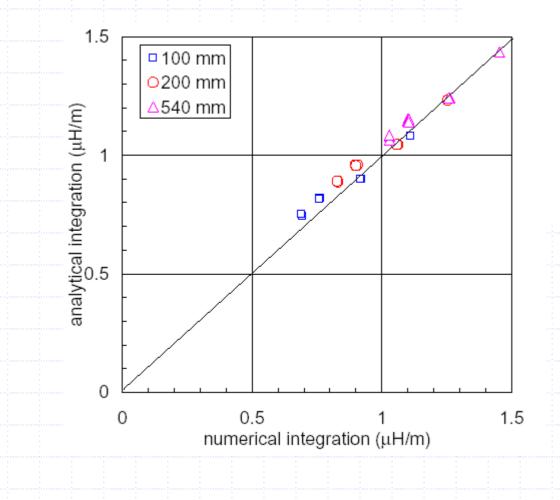
- M. Breschi, "Current Distribution in Multistrand Superconducting Cables", Ph.D. Thesis, University of Bologna, Italy.
- M Fabbri, P.L. Ribani, "A priori error bounds on potentials, fields, and energies evaluated with a modified kernel", IEEE Transactions on Magnetics, 37, 4 (2), pp. 2970 –2976, 2001.

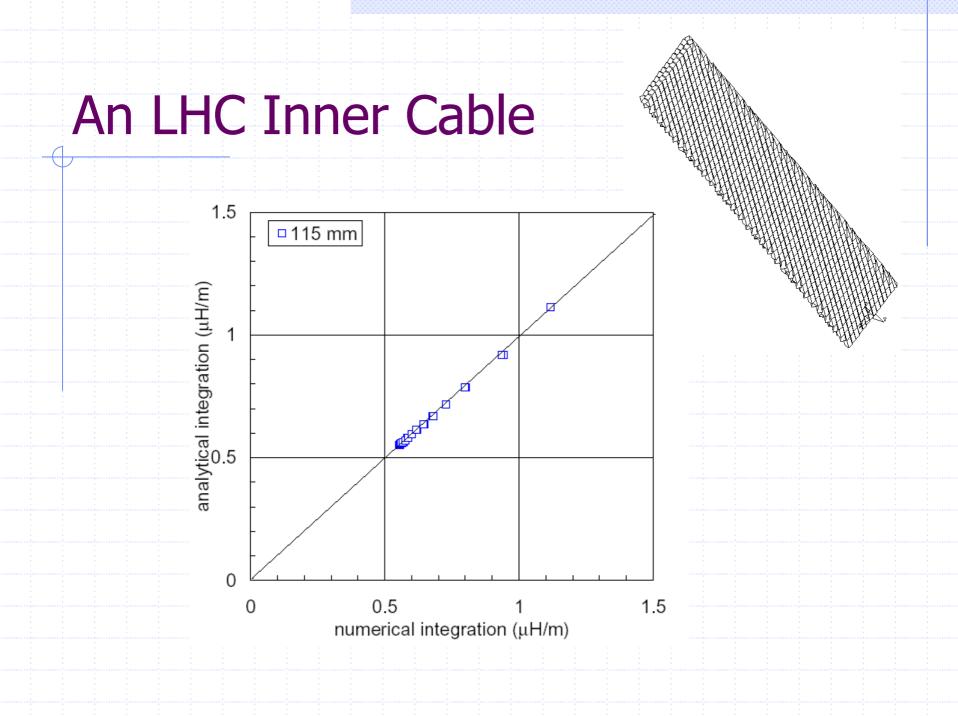
An ITER-like triplet

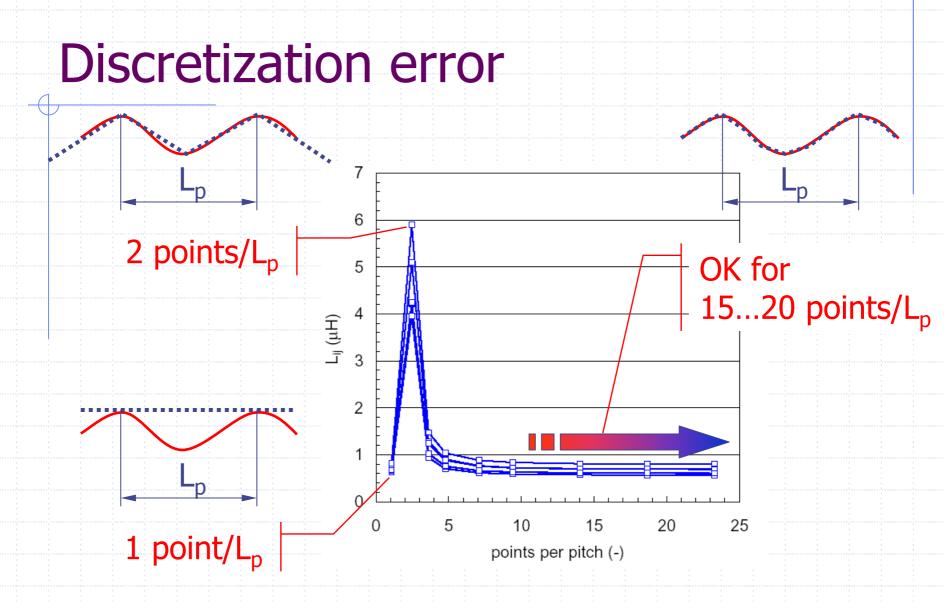


A A

An ITER-like 3x4 subcable







More than \approx 15 points/L _ are necessary to achieve good accuracy

Return line inductance λ_{ii}

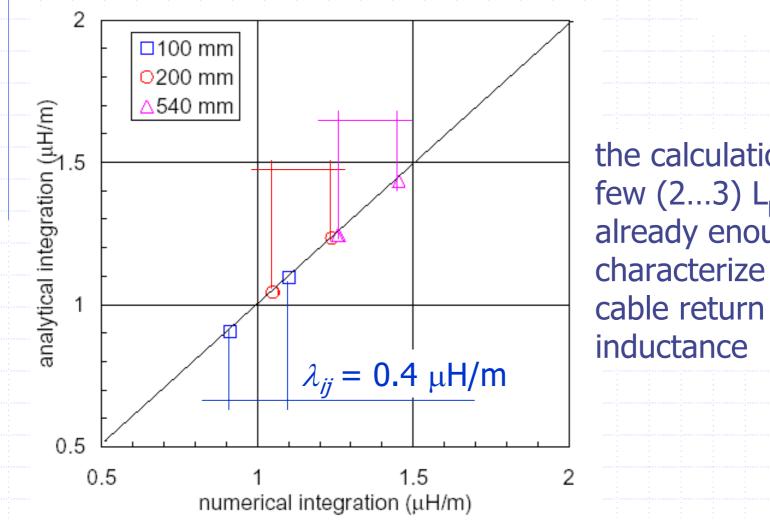
the cable characteristics are determined by the difference of inductances:

 $\lambda_{ij} = 2(l_{ii} - l_{ij})$

λ_{ij} is the *return line inductance* for the couple of strands *i...j*, and governs the cable time constant(s):

$$\tau = N(l-m)g\left(\frac{L}{\pi}\right)^2$$

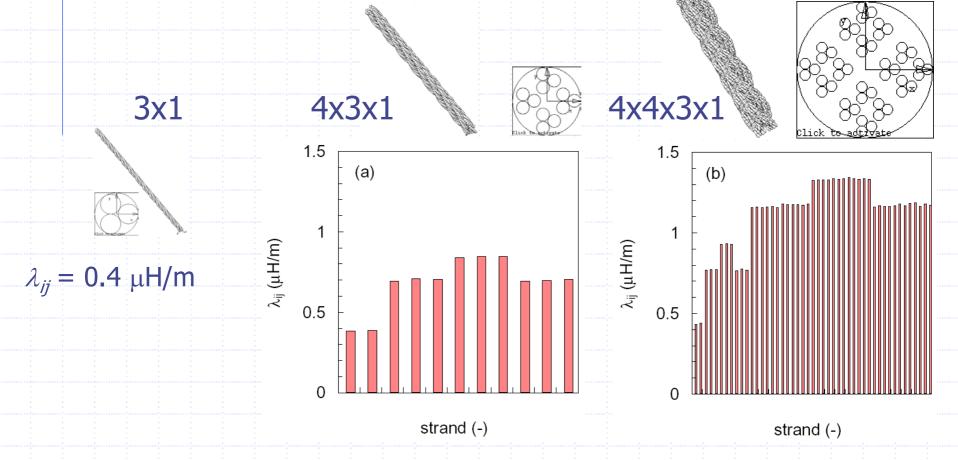
Accurate calculation of λ_{ii}



the calculation of few (2...3) L_p is already enough to characterize the cable return line

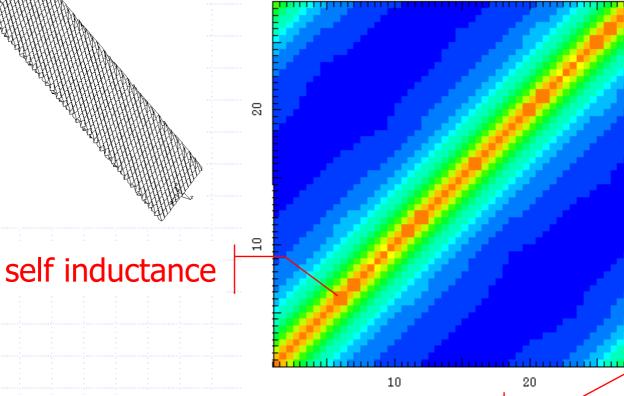
Multi-stage cables λ_{ii}

in multi-stage cables λ_{ij} grows steadily with the number of strands: careful with estimates !

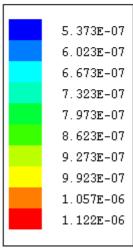


Rutherford cables – I_{ij} matrix

inductance matrix I_{ii}



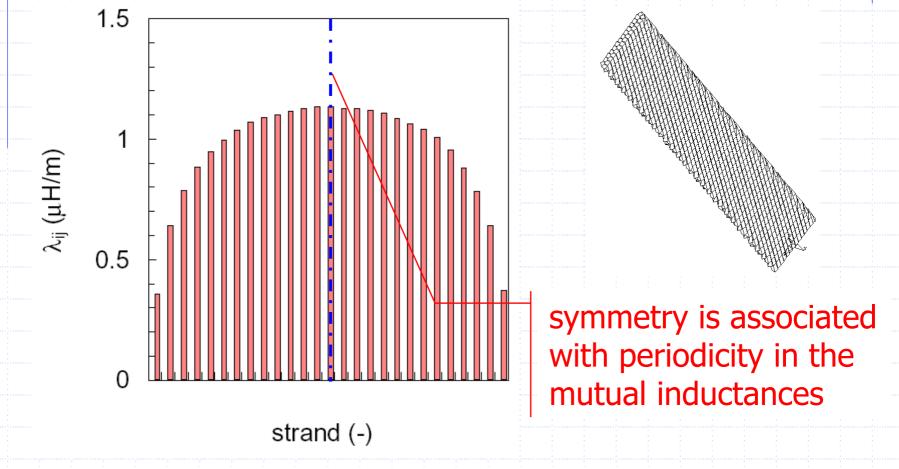
l_{ij} (μH/m)



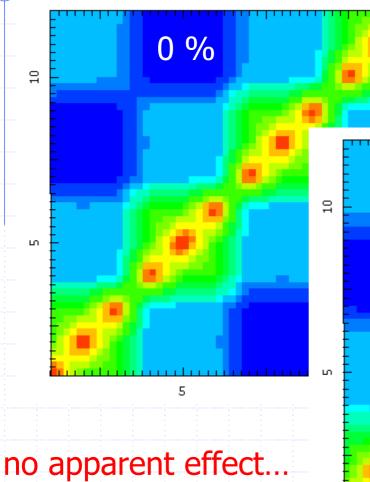
periodicity in the mutual inductances

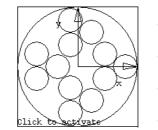
Rutherford cables λ_{ii}

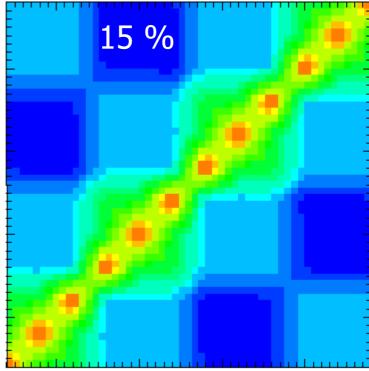
LHC inner cable has a large spectrum of λ_{ij} values are in the range of 1 μ H/m

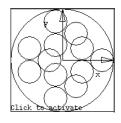


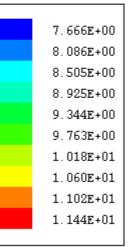
Effect of cable compaction on I_{ii}

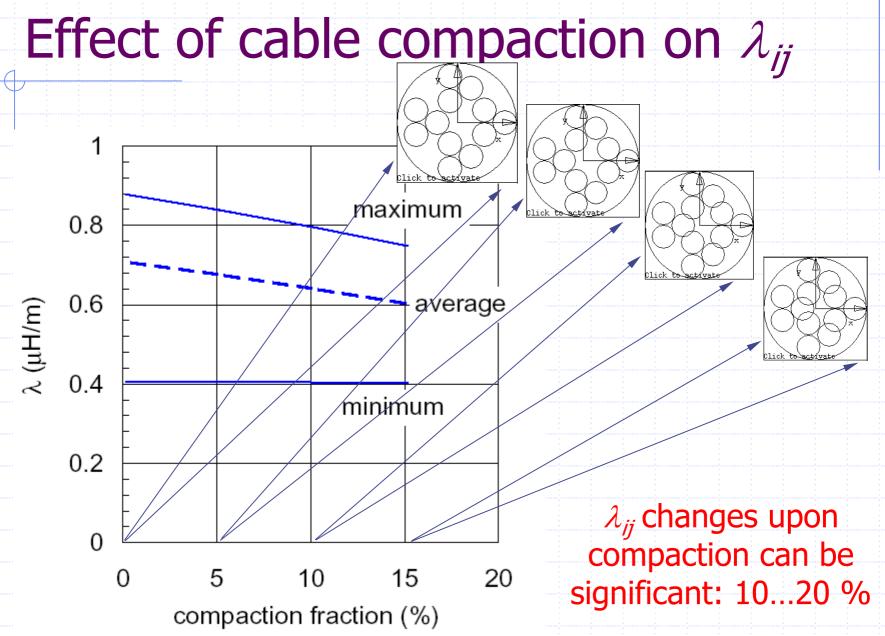






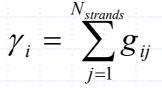




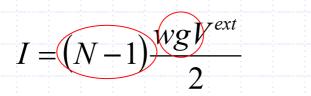


Return line conductance γ_i

total conductance for the current flowing in strand i and returning in all other strands:

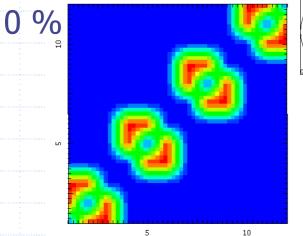


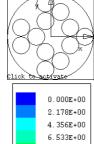
 governs the induced current intensity and cable time constant(s):

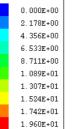


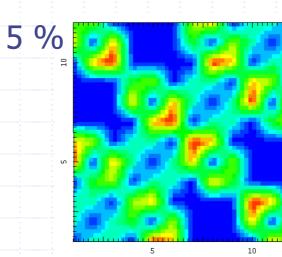
 $\tau = N(l - m)g\left(\frac{L}{\pi}\right)^{2}$

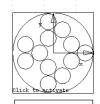
Effect of cable compaction – g_{ij}

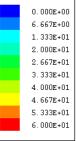


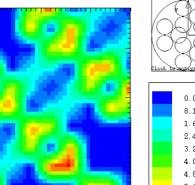




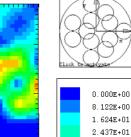


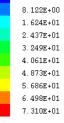


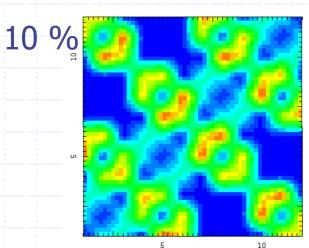


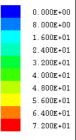


10





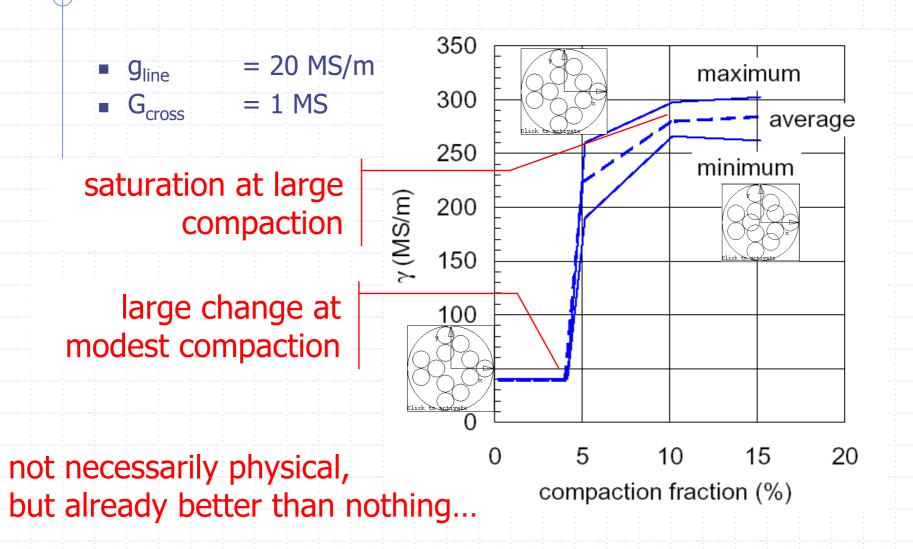




15 %

5

Effect of cable compaction – γ_i



Conclusions...

- model for the analysis of the electrical parameters in multi-stage cables with:
 - parametric, user's defined definition of the conductor
 - basic components (strands)
 - stage design
 - number of stages
 - twist pitch, twist direction (S/Z)
 - *practical* execution times (few seconds to few hours for the cases shown)
 - GUI for display of generated geometry

...more conclusions...

 useful to study the dependence of electrical parameters on the cable design...

- cable size
- cable compaction
- overall differences among cable types (e.g. twisted vs. Rutherford)
- and to compute *accurate* coupling parameters improving on available estimates

...and perspectives

- improve the cable compaction model
 - we are testing:
 - geometric compaction based on minimum interference
 - pseudo-mechanical model
- implement a current pattern reconstruction from measured signals (e.g. Hall plates, flux loops)
 - *influence matrix* calculation already available
- extend GUI for display of computed results