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Why an analytical approach? (1) ||
;
|

> Development of numerical codes including the
calculation of current distribution

»Large effort in the experimental activity

> The experimental validation is essential, but can
be affected by approximations of the
electromagnetic model and uncertainty in the

| evaluation of the model parameters

> Analytical work can be used for a preliminary,
independent code validation
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Why an analytical approach? (2) ||
|
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»Despite the large theoretical and experimental
effort there is a lack of new design criteria
taking into account uneven current distributions

»Analytical formulae for maximum currents
induced in cables, time constants and
redistribution lengths can be useful

| >Previous analytical solutions are based on

2-strand cable models, a generalization to
| N-strand cables is interesting



Historical Overview (1)

Turck (1974): analysis of 2-strand cables,
both insulated (a) and non insulated (b)
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| » Axial propagation of current sharing imposed at the

| boundaries with a magnetic diffusivity D=D(6,L+L,-2M)
> Faulty wires

»Short circuits between strands




Historical Overview (2)
Ries (1980): analysis of 2-strand cables
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»Study of current sharing among quenchmg strands
»Determination of cable thermal stability through
analytical calculation of power dissipated during transient
»Definition of a characteristic redistribution length

and time constant: 1 L'
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Historical Overview (3) !
Krempasky-Schmidt (1995): "Theory of |
|

|

supercurrents” with a 2-strand cable model

»  Study of longitudinal
variations of dB/dt
» Two analytical solutions:
Field ramps ~
(forced diffusion)
Constant field phases
| (free diffusion)
| > Solution for a generic
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cycle is obtained through
superposition due to
linearity of the model
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Historical Overview (4)
Mitchell (1999): analysis of 2-strand cables
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> Study of current redistribution from a normal zone
| »Ris kept constant during the transient
» The redistribution region is considered to be in the
superconducting state
»Development of a lumped circuit approximation to the
solution




Model and assumptions
N-strand cable model
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I The model equations:

. De

must be coupled with appropriate initial and boundary

conditions



General solution

i(x,7) = j%)b+ jdaldo 51) i

»General analytical solution applies to circu/ant | and g
matrices: //7//(: //7_1,/(_1 /7,/(: Z,N , /1,/(: /N,K-l

jd&jdr Kx&1-1v* (e

» This condition is mef:

in Rutherford cables

in CICCs wound in only one stage
on average in multiple stage CICCs

> This solution involves:
Intricate mathematical functions for kernels
Numerical calculation of integrals



1 Nil initial current distribution 7,(x, 0 )=
2 Nil longitudinal resistance r,(x, #)=0 A
3 Simplified model matrices

I, =1if h=k
L =mif h#k

g, =g with h =k

> These assumptions are strong, but:

| they do not affect the validity of the benchmark when the
solutions are compared to numerical codes

they allow an estimation of the mean behaviour
| of strand currents



1) Non uniform current distribution
at the cable boundaries
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Current cycle: ramp-up + plateau i,

i,,(t)=pt fort <y
i,,(t) =Pt fort>¢
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Strand currents during the
current ramp (#< 1)

Linear variation
with x
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Strand currents during the current plateau (#>1,) |I
I|
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Linear variation o | |
with x ﬂ Deviation from linearity
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Cable main time constant =N (/

Cable time constants T, = %j



Current ramp: the non linear term becomes
negligible with respect to the linear term
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At times much longer than the time constant (7 25 1) |i
f
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Current plateau: the non linear term becomes
negligible with respect to the linear term
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Calculations: space dependance

2-strand cable: L=23m,1=5010°H/m, m=2510H/m, |

g=7.46310°S/m,t=2s,8=60A/s, ;=51
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Calculations: time dependance
2 and 3-strand cable: analytical solution (symbols)

vs numerical simulation (lines)
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Calculations: time dependance
4 and 5-strand cable: analytical solution (symbols)

vs numerical simulation (lines)
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2) Quench in one strand
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» Uniform current distribution at the boundaries
» External voltage is neglected

» A lumped resistance in the middle of the cable is
representative of the first phases of quench in strand #1

» Extension of the solution already available for 2-strand
cables (Turck, Mitchell)




Strand currents during a current ramp
with ramp rate B (#< #) in0<x<L/2

Linear variation '\ Deviation from
with x linearity
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Non linear term (current in the quenched strand*l
Space Time |
dependance dependance
) coS sin(¢ (o) - 2x/ L) . n/2 ) exol — L | —
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i At times much longer than the time constant (7 5 1)

Cable time constants

The non linear term becomes negligible with
respect to the linear term, both during the
current ramp and the current plateau
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Calculations: space dependance

2-strand cable: L=23m,1=5010°H/m, m=2510H/m, |
g=7.46310°S/m,t=2s,8=60A/s, ;=51
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Calculations: time dependance

2 and 3-strand cable: analytical solution (symbols)
vs numerical simulation (lines)
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Calculations: time dependance
4 and 5-strand cable: analytical solution (symbols)

vs numerical simulation (lines)
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3) Driving voltage excitation

» Extension of the solution already available for 2-strand
cables (Krempasky-Schmidt) )
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Strand currents during the field ramp

Time Space
dependance dependance
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Strand currents during the constant field phase
Exponential decay
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Maximum currents
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with 4 = 2, N
Redistribution length

Adimensional time

Adimensional current
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Calculations: space dependance

2-strand cable: L=2.3m,1=5010°H/m, m=2510°% H/m,
g=7.46310°5/m,1=2s, #,=51

Field ramp: strand 1 Field plateau: strand 1
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Calculations: time dependance

2 and 3-strand cable: analytical solution (symbols)
vs numerical simulation (lines)
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Calculations: time dependance

4 and 5-strand cable: analytical solution (symbols)
vs numerical simulation (lines)
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Conclusions (1)

Set of analytical formulae for current
distribution in superconducting cables for:

»Preliminary benchmarking of numerical
codes based on distributed parameters
models (CDCABLE, NUCCIC, THEA, ..)

»Estimation of strand currents mean
behaviour in the presence of:

=non uniform boundaries

=localised quenches (Turck, Mitchell for 2-strand cables)
=localised driving voltages (Krempasky-Schmidt

for 2-strand cables)




Conclusions (2)

»Quick Estimation of:

=Time constants
=Redistribution lengths
=Maximum currents due to driving voltages

»Non-linear current-voltage characteristics of
strands is not taken into account

| »Substitution of numerical codes is not possible
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