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Why an analytical approach? (1)

Development of numerical codes including the 
calculation of current distribution

Large effort in the experimental activity
The experimental validation is essential, but can 

be affected by approximations of the 
electromagnetic model and uncertainty in the 
evaluation of the model parameters

Analytical work can be used for a preliminary, 
independent code validation



Despite the large theoretical and experimental 
effort there is a lack of new design criteria 
taking into account uneven current distributions

Analytical formulae for maximum currents 
induced in cables, time constants and 
redistribution lengths can be useful   

Previous analytical solutions are based on 
2-strand cable models, a generalization to 
N-strand cables is interesting

Why an analytical approach? (2)



Historical Overview (1)
Turck (1974): analysis of 2-strand cables, 
both insulated (a) and non insulated (b)
(a) (b) 

Axial propagation of current sharing imposed at the 
boundaries with a magnetic diffusivity D=D(G,L1+L2-2M)

Faulty wires
Short circuits between strands



Ries (1980): analysis of 2-strand cables

Study of current sharing among quenching strands
Determination of cable thermal stability through 

analytical calculation of power dissipated during transient
Definition of a characteristic redistribution length 

and time constant:
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Historical Overview (2)



Krempasky-Schmidt (1995): “Theory of
supercurrents” with a 2-strand cable model

Study of longitudinal 
variations of dB/dt
Two analytical solutions:

• Field ramps 
(forced diffusion)

• Constant field phases
(free diffusion)
Solution for a generic 
cycle is obtained through 
superposition due to 
linearity of the model

Historical Overview (3)



Mitchell (1999): analysis of 2-strand cables

Study of current redistribution from a normal zone
R is kept constant during the transient
The redistribution region is considered to be in the 

superconducting state
Development of a lumped circuit approximation to the 

solution

Historical Overview (4)



Model and assumptions
N-strand cable model
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The model equations:

must be coupled with appropriate initial and boundary 
conditions



General solution

General analytical solution applies to circulant l and g 
matrices: lh,k = lh-1,k-1 h,k = 2,N ; l1,k = lN,K-1

This condition is met:
in Rutherford cables
in CICCs wound in only one stage
on average in multiple stage CICCs
This solution involves:

Intricate mathematical functions for kernels
Numerical calculation of integrals
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Assumptions for simplified solutions

These assumptions are strong, but:
they do not affect the validity of the benchmark when the 
solutions are compared to numerical codes
they allow an estimation of the mean behaviour
of strand currents
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1 Nil initial current distribution ih (x, 0 ) = 0 h = 1, N
2 Nil longitudinal resistance rh (x, t ) = 0 h = 1, N
3 Simplified model matrices



1) Non uniform current distribution
at the cable boundaries
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Current cycle: ramp-up + plateau  
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Strand currents during the 
current ramp (t ≤ t1)

Linear variation
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Strand currents during the current plateau (t >t1)

Linear variation
with x Deviation from linearity
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At times much longer than the time constant (t >> τ)
Current ramp: the non linear term becomes 
negligible with respect to the linear term
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Current plateau: the non linear term becomes 
negligible with respect to the linear term
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Calculations: space dependance
2-strand cable: L = 2.3 m, l = 5.0 10-6 H/m, m = 2.5 10-6 H/m, 
g =7.463 106 S/m, τ = 2 s, β = 60 A/s, t1 = 5 τ
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Calculations: time dependance
2 and 3-strand cable: analytical solution (symbols)
vs numerical simulation (lines)
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Calculations: time dependance
4 and 5-strand cable: analytical solution (symbols)
vs numerical simulation (lines)
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2) Quench in one strand
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A lumped resistance in the middle of the cable is 
representative of the first phases of quench in strand #1

Extension of the solution already available for 2-strand 
cables (Turck, Mitchell)



Strand currents during a current ramp 
with ramp rate β (t ≤ t1) in 0 ≤ x ≤ L/2
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Strand currents during the current plateau 
(t > t1) in 0 ≤ x ≤ L/2
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Non linear term (current in the quenched strand)
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At times much longer than the time constant (t >> τ)
The non linear term becomes negligible with 
respect to the linear term, both during the 
current ramp and the current plateau
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Calculations: space dependance
2-strand cable: L = 2.3 m, l = 5.0 10-6 H/m, m = 2.5 10-6 H/m, 
g =7.463 106 S/m, τ = 2 s, β = 60 A/s, t1 = 5 τ
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Calculations: time dependance
2 and 3-strand cable: analytical solution (symbols)
vs numerical simulation (lines)
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Calculations: time dependance
4 and 5-strand cable: analytical solution (symbols)
vs numerical simulation (lines)
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3) Driving voltage excitation
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Strand currents during the field ramp 
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Maximum currents
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Calculations: space dependance
2-strand cable: L = 2.3 m, l = 5.0 10-6 H/m, m = 2.5 10-6 H/m, 
g =7.463 106 S/m, τ = 2 s, t1 = 5 τ

Field ramp: strand 1 Field plateau: strand 1
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Calculations: time dependance
2 and 3-strand cable: analytical solution (symbols)
vs numerical simulation (lines)
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Calculations: time dependance
4 and 5-strand cable: analytical solution (symbols)
vs numerical simulation (lines)
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Conclusions (1)

Set of analytical formulae for current 
distribution in superconducting cables for:

Preliminary benchmarking of numerical 
codes based on distributed parameters 
models (CDCABLE, NUCCIC, THEA, …)

Estimation of strand currents mean 
behaviour in the presence of:

non uniform boundaries
localised quenches (Turck, Mitchell for 2-strand cables)
localised driving voltages (Krempasky-Schmidt 

for 2-strand cables)



Conclusions (2)

Quick Estimation of:
Time constants
Redistribution lengths
Maximum currents due to driving voltages

Non-linear current-voltage characteristics of 
strands is not taken into account

Substitution of numerical codes is not possible 
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