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Superconducting outsert coils 
and conductors
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NbTi-coil manufacture

wind insulate

impregnate
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Nb3Sn-coil manufacture
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Outsert assembly
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General features of the 
superconducting outsert

Configuration 3 series-connected subcoils 
Nominal operating current (kA) 10 
Individual coil characteristics: Coil A Coil B Coil C 

Type of winding Layer, wind-and-react Layer, wind-and-react Double pancake 
Conductor type Nb3Sn CICC Nb3Sn CICC NbTi CICC 

Number of turns 303 
(6 layers x approx. 51 

turns/layer) 

376 
(7 layers x approx. 54 

turns/layer) 

1025 
(29 pancakes x 35 

turns/pancake, plus 
crossovers and joints) 

Length of conductor (m) 759 1186 4574 
Inner diameter of windings (mm) 710 908 1150 
Outer diameter of windings (mm) 888 1115 1680 

Height of windings (mm) 869 868 992 
Winding pack current density (A/mm2) 39.6 44.3 38.6 

Maximum field at the windings (T) 14.1 a 
15.7 b 

10.9 a 
11.7 b 

8.4 a 
8.5 b 

Field contribution at center (T)
(individual coils)

3.3 3.6 7.4 

Field contribution at center (T) 
(combined coils) 

14.3 

Combined inductance (H) 1.96 
Combined stored energy (MJ) 98 

a Insert and outsert on, both at full current 
b Outsert only at full current 
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Outsert conductor parameters

Parameter Coil A Coil B Coil C 
Cable patterns 5 x 5 x 3 x (6 Nb3Sn comp. 

+ 1 Cu wires, 0.433-mm 
dia.) 

5 x 3 x 3 x (3 Nb3Sn comp. 
+ 4 Cu wires, 0.513-mm 

dia.) 

5 x 3 x 3 x (3 NbTi comp. 
wires, 0.810-mm dia.) 

Cable cross-section 
(projection ⊥ long axis of 
conductor) 

79.44 mm2 
(54.25 mm2 Cu, 

25.19 mm2 non-Cu) 

66.22 mm2 
(55.66 mm2 Cu, 

10.56 mm2 non-Cu) 

70.49 mm2 
(59.14 mm2 Cu, 

11.35 mm2 non-Cu) 
Foil wrap cross-section 2.51 mm2 2.33 mm2 1.89 mm2 
Void cross-section 50.30 mm2 42.55 mm2 36.50 mm2 
Jacket cross-section 80.20 mm2 

(16.22 mm x 13.71 mm, 
1.64-mm wall, 3.40-mm 

outer corner) 

72.86 mm2 
(15.25 mm x 12.97 mm, 
1.64-mm wall, 4.01-mm 

outer corner) 

89.30 mm2 
(15.85 mm x 13.74 mm, 
2.00-mm wall, 4.77-mm 

outer corner) 
Projected critical current 
(at field, temperature, and 
strain of normal operation) 

15.8 kAa 
(at 15.7 T, 1.8 K, and 0.25% 

jacket strain) 

14.7 kAa 
(at 11.7 T, 1.8 K, and 0.25% 

jacket strain) 

21.7 kAb 
(at 8.5 T and 1.8 K) 

Projected current-sharing 
temperature 
(at current, field and strain 
of normal operation) 

4.34 K 
(at 10 kA, 15.7 T, and 
0.25% jacket strain) 

4.86 K 
(at 10 kA, 11.7 T, and 
0.25% jacket strain) 

4.01 K 
(at 10 kA and 8.5 T) 

a Extrapolated from measurements reported in Ref. [7]. 
b Extrapolated from measurements reported in Ref. [6]. 
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Critical current measurements
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16-18 Sept. 2002

CHATS '02
9

History of early high-current operations
Date Max. 

Current 
Ramp time Hold time Result 

9 Dec. 1999 10 kA 80 min. 40 min. Dump to test protection circuit. 

10 Dec. 1999 10 kA 100 min. 2 hr. Combined test with RI, 44.2 T.  Normal ramp down. 

11 Dec. 1999 10 kA 80 min. 2 hr. Normal ramp down. 

12 Dec. 1999 10 kA 100 min. 7 hr. 30 min. User service, normal ramp down. 

12 Dec. 1999 10 kA 80 min. 17 min. Quench, RI reversed. 

22 June 2000 10 kA 120 min. 8 min. Crowbar, VCL over voltage. 

26 June 2000 10 kA 30 min. 2 hr. 30 min. Combined test with RI, 45.2 T.  Normal ramp down. 

3 July 2000 10 kA 30 min. 50 min. Normal ramp down. 

6 July 2000 10 kA 30 min. 8 hr. User service, normal ramp down. 

7 July 2000 10 kA 30 min. 7 min. Dump!  Quench or instrumentation glitch? 

10 July 2000 10 kA 30 min. 5 min. Unprotected quench. 

2 Aug. 2000 9.5 kA 6 hr. 30 min. 0 min. Slow ramp to assess damage.  Quench. 

4 Aug. 2000 9 kA 7 hr. 2 hr. Slow ramp.  Assess new operating margins.  Normal ramp down. 
 

Based on results from the latter run, the superconducting outsert was approved to operate 

continuously at 8 kA for service to NHMFL users. 
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Instrumentation

• Since the 45-T Hybrid is a facility for scientific 
research rather than a test article for magnet 
development, there is no instrumentation internal to 
the magnet windings

• There are, however, voltage taps attached to every 
layer and every pancake via the helium flow 
connections

• And, there are calibrated temperature sensors in the 
HeII reservoir

• These are adequate for providing an understanding 
the magnet’s performance
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Temperature response in the
HeII reservoir to 0-5-0kA

outsert-current ramps
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Conversion of temperature-response
data to corrected energy deposition

After cessation of heating, temperature is observed to recover 
according to
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and the corrected heat deposition in the reservoir causing a rise 
from T0 to T is
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Corrected energy deposition
(continued)

• The last term in the previous relation is a correction 
for joint heating

• R(I) represents the total joint resistance corrected for 
magneto-resistance

• The magneto-resistance correction is relatively 
simple because 30 of the 38 joints in the HeII space 
are on the outer diameter of Coil C, where the field 
for any particular current is the same within about 
10%

• All joints are of similar construction with resistance 
determined in a relatively simple way by properties of 
constituents: Cu, SnAg, and SnPb
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A typical joint
95Sn-
5Ag 
solder

Imbedded 
heaters

60Sn-
40Pb 
solder

Rjoint ~ 0.45 nΩ at B = 0
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Corrected energy deposition for
0-5-0 kA outsert-current ramps
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Joints, flow connections, and 
voltage taps on the outsert
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Layer voltages for Coil A
during 0-5kA-0 ramp at 10 A/s
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Losses due to current in Coil-A layers
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Losses due to current in Coil-B layers
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Losses due to current in Coil-C pancakes
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Distribution of losses
generated by individual coils
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Calculated hysteresis and coupling 
losses for typical Hybrid operations

  Qcoup [kJ] 
Iout,max Qhyst Ramp rate [A/s] 
[kA] [kJ] 2 3 5 10 

0 0.00 0.00 0.00 0.00 0.00 
0.5 5.60 0.10 0.15 0.25 0.49 
5 44.20 0.98 1.48 2.46 4.92 
8 58.10 1.57 2.36 3.94 7.87 

10 62.10 1.97 2.95 4.92 9.84 
 

Linear ramp 
up or down 
in current at 
various rates

 

  Qcoup [kJ] 
Iout,max Qhyst τdisch [s] 
[kA] [kJ] 4.4 700 

0 0.00 0.00 0.00 
0.5 5.60 2.78 0.02 
5 44.20 277.65 1.76 
8 58.10 710.79 4.50 

10 62.10 1110.61 7.03 
 

Exponential dis-
charge for typical 
time constants 
(dump and crowbar)
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Basis of loss calculations

• JC(B,T) as given in “Outsert conductor 
parameters” table

• deff of 42, 49, and 50 µm (Coils A, B, and C, 
resp.)

• τcable of 30,30, and 160 ms (Coils A, B, and C, 
resp.)
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Alternate determinations of the total loss 
for 0-5kA-0 ramp at 10 A/s
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Losses for 0-5kA-0 ramps
at different ramp rates
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Corrected energy deposition for
0-10kA ramp at 2 A/s followed by
crowbar with 700s time constant

0

20

40

60

80

100

120

140

160

0 2000 4000 6000 8000 10000 12000 14000

Time [s]

En
er

gy
 [k

J]

0

2

4

6

8

10

12

14

16

Cu
rr

en
t [

kA
]

Corrected heat dep.
Outsert current

72 kJ

76 kJ

56 kJ



16-18 Sept. 2002

CHATS '02
27

Corrected energy deposition during
a 0-10kA ramp and 8h hold
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Index losses

Index heating occurs near the critical current I0 according to

∫+
•

=
),(0

0
1

TBI
dlEIQ n

n
index

where E0 is the criterion for establishing I0 and the index n
characterizes the rate of rise of voltage with increasing 
current.  I0 = I0(B,T) and the integration is over a length of 
conductor in the windings with local variations of both. 

In tests of the Hybrid CICCs, E0 = 50 µV/m and n = 15.  

Appreciable index heating can be expected in the Hybrid 
outsert for elevated temperatures (e.g, ~ 4 K in Coil A).
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Index heating: key in the process 
leading to quenches during early 
phases of operation

• Limited cooling afforded by static HeII in long 
channels locally exceeded by transient losses

• Local temperature elevation into HeI range
• Locally reduced critical current and low-level 

heating by index losses
• Slow runaway toward quench due to drastically 

reduced heat transport of HeI
• This is a delicate balance affected by:

– field from insert,
– prior operations, or
– starting temperature of HeII reservoir
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Unprotected quench,
10 July 2000
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Coincidence with a malfunction of the quench-detection 
computer resulted in sparse data
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Unprotected quench:
what we know

• The quench occurred after being at full current (10 kA) for 
about 4 minutes.

• Only Coil A developed resistance.
• Resistance in Coil A developed most quickly in the first 3 

layers.
• A clear indication of resistance in the 4th and 5th layers was 

not evident until 10 s or more after the quench was fully 
developed.

• Resistance was never clearly evident in the 6th layer.
• The development of resistance was such that the discharge 

quickly became exponential in character with a time 
constant of about 10 s.

• Analysis indicates the “hot-spot” temperature was 500K or 
greater.
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Outsert performance following 
unprotected quench
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• The apparent net result is essentially a reduction of the 
index from around 15 to about 5.

• Index heating at 8 kA or below is negligible.

• On-axis contribution 11.4 T, max field 12.5 T
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Summary
• Measurements of total ac losses are comparable to calculated 

values
• Electrical measurements during triangular ramps provide some 

confidence in the spatial distribution of calculated losses 
• AC losses do not appear to be substantially different than 

assumed during the design phase
• Calorimetric data from high-current ramps suggest that limited 

cooling during fast charges and the onset of index heating 
results in a delicate balance between stable operation and 
slow, thermal runaway.

• This may explain the quenches observed in the early phases 
of operation

• A better assessment of this possibility requires more detailed 
thermal analysis, which is the subject of a companion paper at 
this workshop
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