Summary of Monday Morning Session (1)

Invited Talk by L. Rossi "Superconducting Magnets for Particle Accelerators and Detectors

Comparison of requirements and challenges Accelerators vs. Detectors

- High field vs. low . medium field
- High field quality vs. no field quality
- Advanced strands (R&D needs) vs. state of the art strands
- Stability: wide spectrum of perturbation vs. highly stable coil
- MQE of mJ vs. 0.1 1 J
- Quench protection: Fast heaters vs. external dumper + heaters
- Thousands of magnets vs. One huge magnet

Necessity of modelling impregnated coils

General: We need an integrated modelling for mechanical, e.m. and thermal performance

Cost issues for conductors:

Controlling the stabilizer content Controlling the magnetization behaviour Controlling the contact resistance

Going to higher fields: $\cos\theta$ magnet, block type magnet, use of Nb₃Sn and HTS

Next step planned for LHC: Replacement of IR magnets by Nb₃Sn magnet

Summary of Monday Morning Session (2)

Two Talks considering the Performance of the 45-T-Hybrid magnet at NHMFL

J. Miller describing the experimental results

- Low n-value of 15 for the cable at 50 μV/m
- decreased to n = 5 after degradation which was due to an undetected guench.
- Estimation of hotspot temperature of about 500 K
- Only 8 kA operation possible (11.4 T instead of 12.5 T)

Low n-value leads to heating and thermal run away at 12.5 T operation Runaway could be prevented if the resistive insert was on (reduction of field at Nb₃Sn coil)

More detailed thermal analysis needed

C. Luongo describing the model and results

Development of a thermal model to understand the coil behaviour during and after ramping AC losses and n-index losses

Issues for model: look on

- Efect of index heating and influence of n-value
- Effect of layer to layer heat transfer
- Influence of resistive insert
- Thermal recovery of outsert coil

Model results:

Run away due to index heating

Taking into account layer to layer heat transfer (adiabatic vs. non-adiabatic) leads only to a delay of the runaway No thermal run away with resistive insert due to reduced field

Recovery time is in the order of 1 hour (due to the end cooling)

Summary of Monday Morning Session (3)

Presentation of GSI Project

M. Wilson describing the project

- Two rings SIS-100 and SIUS-200, the latter one has a further option (SIS-300)
- Main challenge is the pulsed operation (a few T/s)
- Nuclotron magnets, RHIC magnets and UNK magnets as options
- Modification of Nuclotron magnet design due to the high AC losses but present design leads to training

L. Bottura describing an alternative conductor design

Alternative conductor design of the Nuclotron conductor:

- No indirect cooling, high stability margin
- No training at all
- Pressure drop acceptable
- THQB occurs but helps for quench protection. Problem of high pressure rise during quench.

Further optimisation needed and model has to be built