The Twin Composite Higgs Scenario

Andrea Wulzer

Università degli Studi di Padova

Introduction

"Leaving no stone unturned in the hunt for Naturalness"

Introduction

"Leaving no stone unturned in the hunt for Naturalness"

Introduction

"Leaving no stone unturned in the hunt for Naturalness"

"Is m_H Unnatural?" = "Is m_H Unpredictable?"

"Is m_H Unnatural?" = "Is m_H Unpredictable?"

$$(m_H^2)_{Phys.} = \int_0^\infty F_{true}(E; g_{true})$$
$$= \int_0^{\lesssim \Lambda_{\rm SM}} (\dots) + \int_{\lesssim \Lambda_{\rm SM}}^\infty (\dots)$$

"Is m_H Unnatural?" = "Is m_H Unpredictable?"

Measures how much Unpredictable m_H is.

The usual argument:

$$\Delta \ge \left(\frac{\Lambda_{\rm SM}}{500\,{\rm GeV}}\right)^2 \implies \Lambda_{\rm SM} \le 500\,{\rm GeV} \cdot \sqrt{\Delta}$$

The usual argument:

$$\Delta \ge \left(\frac{\Lambda_{\rm SM}}{500\,{\rm GeV}}\right)^2 \implies \Lambda_{\rm SM} \le 500\,{\rm GeV} \cdot \sqrt{\Delta}$$

The usual interpretation:

$$\Lambda_{\rm SM} = M_{\rm Partners} =$$

"Scale where m_H finds its physical origin"

The usual argument:

$$\Delta \ge \left(\frac{\Lambda_{\rm SM}}{500\,{\rm GeV}}\right)^2 \implies \Lambda_{\rm SM} \le 500\,{\rm GeV} \cdot \sqrt{\Delta}$$

The usual interpretation:

Partners are SM charged: **SUSY:** Stops, Gluinos, ... **CH:** Top Partners, EW partners...

 $\Lambda_{\rm SM} = M_{\rm Partners} = \begin{array}{l} \text{``Scale where } m_H \text{ finds its} \\ \text{physical origin ''} \end{array}$

The usual argument:

$$\Delta \ge \left(\frac{\Lambda_{\rm SM}}{500\,{\rm GeV}}\right)^2 \implies \Lambda_{\rm SM} \le 500\,{\rm GeV} \cdot \sqrt{\Delta}$$

The usual interpretation:

Minimal source of tuning: $\xi = \frac{v^2}{f^2} \ll 1$ (from EWPT&Higgs)

$$\delta m_H^2 \sim \frac{N_c g_{\rm E}^2}{8\pi^2} \frac{m_*^4}{g_*^2 f^2} = \frac{N_c g_*^2}{8\pi^2} m_*^2 - \frac{g_{\rm E}^2}{y_t^2} \left(\frac{m_*}{500\,{\rm GeV}}\right)^2 m_H^2 \quad \text{Res. scale} = \text{Tuning scale}$$

$m_{\rm EW}$

 $m_{
m EW}$

Plus resonances at \mathcal{M}_* , like in ordinary CH, but heavier

Gauge contribution to the potential, from a model

$$V_{g_2^2} = \frac{9g_*^2 f^4}{512\pi^2} \left(g_2^2 \sin^2 \frac{H}{f} + \tilde{g}_2^2 \cos^2 \frac{H}{f} \right)$$

Twin Higgs miracle: $g_2 = \tilde{g}_2 \Rightarrow V_{g_2^2} = \text{const.}$

Gauge contribution to the potential, from a model

$$V_{g_2^2} = \frac{9g_*^2 f^4}{512\pi^2} \left(g_2^2 \sin^2 \frac{H}{f} + \tilde{g}_2^2 \cos^2 \frac{H}{f} \right)$$

Twin Higgs miracle: $g_2 = \tilde{g}_2 \Rightarrow V_{g_2^2} = \text{const.}$

Guessing the cancellation: quadratic divergence

$$\begin{split} E_{\substack{m_{*}=\Lambda\\\text{SO}(8)/\text{SO}(7)\\\text{sigma-model}}} & \vec{\Sigma} = \begin{bmatrix} \vec{\pi}\\ \vec{\tilde{\pi}} \end{bmatrix} = U[H/f] \cdot \begin{bmatrix} \vec{0}\\ f \end{bmatrix} = \begin{bmatrix} \vec{0}\\ s_{H}f\\ \vec{0}\\ c_{H}f \end{bmatrix} \\ V^{\Lambda^{2}} = \frac{\Lambda^{2}}{16\pi^{2}} [g_{2}^{2}|\vec{\pi}|^{2} + \widetilde{g}_{2}^{2}|\vec{\tilde{\pi}}|^{2}] = \frac{\Lambda^{2}f^{2}}{16\pi^{2}} [g_{2}^{2}s_{H}^{2} + \widetilde{g}_{2}^{2}c_{H}^{2}] \end{split}$$

Gauge contribution to the potential, from a model

$$V_{g_2^2} = \frac{9g_*^2 f^4}{512\pi^2} \left(g_2^2 \sin^2 \frac{H}{f} + \tilde{g}_2^2 \cos^2 \frac{H}{f} \right)$$

Twin Higgs miracle: $g_2 = \tilde{g}_2 \Rightarrow V_{g_2^2} = \text{const.}$

Guessing the cancellation: quadratic divergence

Gauge contribution to the potential, from a model

$$V_{g_2^2} = \frac{9g_*^2 f^4}{512\pi^2} \left(g_2^2 \sin^2 \frac{H}{f} + \tilde{g}_2^2 \cos^2 \frac{H}{f} \right)$$

Twin Higgs miracle: $g_2 = \widetilde{g}_2 \Rightarrow V_{g_2^2} = \text{const.}$

Proving the cancellation: Spurion classification

$$\mathcal{L}_{\text{int}} = W^{\alpha}_{\mu} G^{A}_{\alpha} J^{\mu}_{A} + \widetilde{W}^{\alpha}_{\mu} \widetilde{G}^{A}_{\alpha} J^{\mu}_{A} \qquad G, \widetilde{G} \in \mathbf{28} = \mathbf{21} \oplus \mathbf{7}$$

Gauge contribution to the potential, from a model

$$V_{g_2^2} = \frac{9g_*^2 f^4}{512\pi^2} \left(g_2^2 \sin^2 \frac{H}{f} + \tilde{g}_2^2 \cos^2 \frac{H}{f} \right)$$

Twin Higgs miracle: $g_2 = \widetilde{g}_2 \Rightarrow V_{g_2^2} = \text{const.}$

Proving the cancellation: Spurion classification

$$\mathcal{L}_{\text{int}} = W^{\alpha}_{\mu} G^{A}_{\alpha} J^{\mu}_{A} + \widetilde{W}^{\alpha}_{\mu} \widetilde{G}^{A}_{\alpha} J^{\mu}_{A} \qquad G, \widetilde{G} \in \mathbf{28} = \mathbf{21} \oplus \mathbf{7}$$

of invariant operators = (# of H invariants) - (# of G invariants) = 2 - 1

Gauge contribution to the potential, from a model

$$V_{g_2^2} = \frac{9g_*^2 f^4}{512\pi^2} \left(g_2^2 \sin^2 \frac{H}{f} + \tilde{g}_2^2 \cos^2 \frac{H}{f} \right)$$

Twin Higgs miracle: $g_2 = \widetilde{g}_2 \Rightarrow V_{g_2^2} = \text{const.}$

Proving the cancellation: Spurion classification

 $\mathcal{L}_{\text{int}} = W^{\alpha}_{\mu} G^{A}_{\alpha} J^{\mu}_{A} + \widetilde{W}^{\alpha}_{\mu} \widetilde{G}^{A}_{\alpha} J^{\mu}_{A} \qquad G, \widetilde{G} \in \mathbf{28} = \mathbf{21} \oplus \mathbf{7}$ # of invariant operators = (# of H invariants) - (# of G invariants) = **2 - 1**

$$I = \sum_{\alpha, \hat{a}} \left\{ \operatorname{Tr}[T_{7}^{\hat{a}}U^{t}G_{\alpha}U] \right\}^{2} = \begin{cases} I = \frac{3}{4}g_{2}^{2}\sin^{2}\frac{H}{f} \\ \widetilde{I} = \frac{3}{4}\widetilde{g}_{2}^{2}\cos^{2}\frac{H}{f} \end{cases}$$

with same coefficient: Spurions are identical from CS viewpoint

Gauge contribution to the potential, from a model

$$V_{g_2^2} = \frac{9g_*^2 f^4}{512\pi^2} \left(g_2^2 \sin^2 \frac{H}{f} + \tilde{g}_2^2 \cos^2 \frac{H}{f} \right)$$

Twin Higgs miracle: $g_2 = \tilde{g}_2 \Rightarrow V_{g_2^2} = \text{const.}$

Proving the cancellation: Spurion classification

 $\mathcal{L}_{\text{int}} = W^{\alpha}_{\mu} G^{A}_{\alpha} J^{\mu}_{A} + \widetilde{W}^{\alpha}_{\mu} \widetilde{G}^{A}_{\alpha} J^{\mu}_{A} \qquad G, \widetilde{G} \in \mathbf{28} = \mathbf{21} \oplus \mathbf{7}$ # of invariant operators = (# of H invariants) - (# of G invariants) = **2 - 1**

Having one invariant only, $\Lambda^2 {\rm cancellation}$ is sufficient

$$\begin{aligned} \text{IF} \quad V^{\Lambda^2} &\propto [I + \widetilde{I}] \propto [g_2^2 s_H^2 + \widetilde{g}_2^2 c_H^2] \\ \text{THEN} \quad V &\propto [I + \widetilde{I}] \propto [g_2^2 s_H^2 + \widetilde{g}_2^2 c_H^2] \end{aligned}$$

Gauge contribution to the potential, from a model

$$V_{g_2^2} = \frac{9g_*^2 f^4}{512\pi^2} \left(g_2^2 \sin^2 \frac{H}{f} + \tilde{g}_2^2 \cos^2 \frac{H}{f} \right)$$

Twin Higgs miracle: $g_2 = \tilde{g}_2 \Rightarrow V_{g_2^2} = \text{const.}$
Disproving the cancellation: $SU(4)/SU(3)$ coset

$$G, \widetilde{G} \in \mathbf{15} = \mathbf{8} \oplus \mathbf{3} \oplus \mathbf{1}$$

of invariant operators = (# of H invariants) - (# of G invariants) = 3 - 1

$$I_{1} = g_{2}^{2} s_{H}^{2} \qquad \qquad \widetilde{I}_{1} = \widetilde{g}_{2}^{2} c_{H}^{2} \\ I_{2} = g_{2}^{2} s_{H}^{4} \qquad \qquad \widetilde{I}_{2} = \widetilde{g}_{2}^{2} c_{H}^{4}$$

Gauge contribution to the potential, from a model

$$V_{g_2^2} = \frac{9g_*^2 f^4}{512\pi^2} \left(g_2^2 \sin^2 \frac{H}{f} + \widetilde{g}_2^2 \cos^2 \frac{H}{f} \right)$$

Twin Higgs miracle: $g_2 = \widetilde{g}_2 \Rightarrow V_{g_2^2} = \text{const.}$
Disproving the cancellation: $SU(4)/SU(3)$ coset

$$G, G \in \mathbf{15} = \mathbf{8} \oplus \mathbf{3} \oplus \mathbf{1}$$

of invariant operators = (# of H invariants) - (# of G invariants) = 3 - 1

	$I_1 = g_2^2 s_H^2$	$I_1 = \tilde{g}_2^2 c_H^2$
	$I_2 = g_2^2 s_H^4$	$\widetilde{I}_2 = \widetilde{g}_2^2 c_H^4$
EVEN IF	$V^{\Lambda^2} \propto [I_1 + \tilde{I}_1] \propto [g_2^2 s_H^2 + \tilde{g}_2^2 c_H^2]$	
STLL	$V \propto [I_1 + \widetilde{I}_1 + c(I_2 + \widetilde{I}_2)]$)] $\propto [g_2^2 s_H^2 + \tilde{g}_2^2 c_H^2 + c(g_2^2 s_H^4 + \tilde{g}_2^2 c_H^4)]$

Gauge contribution to the potential, from a model

$$V_{g_2^2} = \frac{9g_*^2 f^4}{512\pi^2} \left(g_2^2 \sin^2 \frac{H}{f} + \widetilde{g}_2^2 \cos^2 \frac{H}{f} \right)$$

Twin Higgs miracle: $g_2 = \widetilde{g}_2 \Rightarrow V_{g_2^2} = \text{const.}$

Enforcing the cancellation: Twin Parity

$$\mathcal{P}_{\mathrm{Twin}} = \begin{bmatrix} 0 & \mathbb{1}_4 \\ \mathbb{1}_4 & 0 \end{bmatrix} \in \mathrm{SO}(8)$$

automatically a symmetry of the CS

times $W_{\mu} \leftrightarrow \widetilde{W}_{\mu}$

if imposed on the ES requires $g_2 = \widetilde{g}_2$

Gauge contribution to the potential, from a model

$$V_{g_2^2} = \frac{9g_*^2 f^4}{512\pi^2} \left(g_2^2 \sin^2 \frac{H}{f} + \tilde{g}_2^2 \cos^2 \frac{H}{f} \right)$$

Twin Higgs miracle: $g_2 = \tilde{g}_2 \Rightarrow V_{g_2^2} = \text{const.}$

Enforcing the cancellation: Twin Parity

$$\mathcal{P}_{\mathrm{Twin}} = \begin{bmatrix} 0 & \mathbb{1}_4 \\ \mathbb{1}_4 & 0 \end{bmatrix} \in \mathrm{SO}(8) \quad \overset{\mathbf{a}}{\underline{\mathbf{s}}}$$

times $W_{\mu} \leftrightarrow \widetilde{W}_{\mu}$

automatically a symmetry of the CS

if imposed on the ES requires $g_2 = \widetilde{g}_2$

Broken by not gauging the Twin Hypercharge:

$$V_{g_1^2} = \frac{3g_*^2 f^4}{512\pi^2} g_1^2 \sin^2 \frac{H}{f}$$

not canceled (not dangerous) quadratic contribution

Plus resonances at m_* , like in ordinary CH, but heavier

1) From Hypercharge
$$V_{g_1^2} = \frac{3g_*^2 f^4}{512\pi^2} g_1^2 \sin^2 \frac{H}{f}$$

1) From Hypercharge
$$V_{g_1^2} = \frac{3g_*^2 f^4}{512\pi^2} g_1^2 \sin^2 \frac{H}{f}$$

2) From the Top
$$V_{y^4} \simeq \frac{N_c f^4}{16\pi^2} y_L^4 \sin^2 \frac{H}{f}$$

Twin Composite Higgs Potential

1) From Hypercharge
$$V_{g_1^2} = \frac{3g_*^2 f^4}{512\pi^2} g_1^2 \sin^2 \frac{H}{f}$$

2) From the Top $V_{y^4} \simeq \frac{N_c f^4}{16\pi^2} y_L^4 \sin^2 \frac{H}{f}$
3) From **Detuning** $V_{y^2} = \frac{N_c f^2 m_*^2}{32\pi^2} [y_L^2 s_H^2 + \tilde{y}_L^2 c_H^2]$

1) From Hypercharge
$$V_{g_1^2} = \frac{3g_*^2 f^4}{512\pi^2} g_1^2 \sin^2 \frac{H}{f}$$

2) From the Top $V_{y^4} \simeq \frac{N_c f^4}{16\pi^2} y_L^4 \sin^2 \frac{H}{f}$
3) From **Detuning** $V_{y^2} = \frac{N_c f^2 m_*^2}{32\pi^2} [y_L^2 s_H^2 + \tilde{y}_L^2 c_H^2]$
4) From **IR running** $V_{IR}(H) = \frac{N_c}{16\pi^2} \left[m_t(H)^4 \log \frac{m_*^2}{m_t(H)^2} + m_{\tilde{t}}(H)^4 \log \frac{m_*^2}{m_{\tilde{t}}(H)^2} \right]$

$$\begin{aligned} \frac{V(H)}{f^4} &= \alpha s^2 + \beta \left(s^4 \log \frac{a}{s^2} + c^4 \log \frac{a}{c^2} \right) \\ \alpha &= \frac{3g_1^2 g_*^2}{512\pi^2} A + \frac{3\Delta y^2 g_*^2}{32\pi^2} B \qquad \beta = \frac{3y_t^4}{64\pi^2} \qquad \log a = \log \frac{2m_*^2}{y_t^2 f^2} + \frac{y_L^4}{y_t^4} F_1 \end{aligned}$$

$$\frac{V(H)}{f^4} = \alpha s^2 + \beta \left(s^4 \log \frac{a}{s^2} + c^4 \log \frac{a}{c^2} \right)$$

$$\alpha = \frac{3g_1^2 g_*^2}{512\pi^2} A + \frac{3\Delta y^2 g_*^2}{32\pi^2} B \qquad \beta = \frac{3y_t^4}{64\pi^2} \qquad \log a = \log \frac{2m_*^2}{y_t^2 f^2} + \frac{y_L^4}{y_t^4} F_1$$
Naturally light Higgs:

$$\log a \simeq 6 + \log \sqrt{\xi} \qquad \text{OK for} \begin{cases} g_* = 4\pi \Rightarrow m_* = 4\pi f \sim 9 \text{TeV}\sqrt{10\xi} \\ y_L = y_t \text{: composite } t_R \\ \text{Elementary } t_R \text{ is disfavoured} \end{cases}$$

$$\frac{V(H)}{f^4} = \alpha s^2 + \beta \left(s^4 \log \frac{a}{s^2} + c^4 \log \frac{a}{c^2} \right)$$

$$\alpha = \frac{3g_1^2 g_*^2}{512\pi^2} A + \frac{3\Delta y^2 g_*^2}{32\pi^2} B \qquad \beta = \frac{3y_t^4}{64\pi^2} \qquad \log a = \log \frac{2m_*^2}{y_t^2 f^2} + \frac{y_L^4}{y_t^4} F_1$$
Naturally light Higgs:

$$\log a \simeq 6 + \log \sqrt{\xi} \qquad \text{OK for} \begin{cases} g_* = 4\pi \Rightarrow m_* = 4\pi f \sim 9 \text{TeV}\sqrt{10\xi} \\ y_L = y_t \colon \text{ composite } t_R \\ \text{Elementary } t_R \text{ is disfavoured} \end{cases}$$

$$\begin{array}{ll} \mbox{Minimal VEV tuning (1/\xi) if:} & \log \frac{\Lambda_{\rm UV}}{m_*} \!=\! \frac{80\pi^2}{bBg_1^2} \frac{y_t^2}{g_*^2} \!\geq\! \frac{50}{bB} \\ & \mbox{large scale separation} \end{array}$$

• Twin Higgs protects m_H from partner scale m_* But only under certain conditions (1 invariant in the potential)

- Twin Higgs protects m_H from partner scale m_* But only under certain conditions (1 invariant in the potential)
- "Reasonable" model with Twin breaking from g_1 at $\Lambda_{\rm UV}$

- Twin Higgs protects m_H from partner scale m_* But only under certain conditions (1 invariant in the potential)
- "Reasonable" model with Twin breaking from g_1 at $\Lambda_{\rm UV}$
- Phenomenology: (more in backup)
 - 1.**Future** Top Partner bounds avoided (currently not an issue) 2.Order ξ modified Higgs couplings are still there (and EWPT?) 3.Resonances might be at 10 TeV, FCC-hh is needed 4."Portal—like" phenomenology. Is it robust?

- Twin Higgs protects m_H from partner scale m_* But only under certain conditions (1 invariant in the potential)
- "Reasonable" model with Twin breaking from g_1 at $\Lambda_{\rm UV}$
- Phenomenology: (more in backup)
 - 1. **Future** Top Partner bounds avoided (currently not an issue) 2. Order ξ modified Higgs couplings are still there (and EWPT?) 3. Resonances might be at 10 TeV, FCC-hh is needed 4. "Portal—like" phenomenology. Is it robust?
- Two directions to work on:

PH/EXP

Could the Twin W, t (or b) be directly testable at the LHC?

TH/PH

Alternative models?

Non—Twin implementations of Twin cancellation?

Top Partners

MCHM Models, simplified model approach:

Top Partners

MCHM Models, simplified model approach:

Top Partners

MCHM Models, simplified model approach:

Higgs Couplings

A rough comparison with data:

Vector Resonances

[Pappadopulo, Torre, Thamm, AW, 2014]

Vector Resonances

[Torre, Thamm, AW, for FCC W.G.]

Direct versus Indirect @ LHC

Vector Resonances

[Torre, Thamm, AW, for FCC W.G.]

Direct versus Indirect @ FCC

Strict EWPT have a dramatic impact!

However ...

Modified Higgs couplings go in bad direction.

However ...

$$\Delta \hat{S} = \frac{g^2}{96\pi^2} \xi \log\left(\frac{8\pi m_W}{gm_h\sqrt{\xi}}\right) + \frac{m_W^2}{m_\rho^2}$$
$$\Delta \hat{T} = -\frac{3g'^2}{32\pi^2} \xi \log\left(\frac{8\pi m_W}{gm_h\sqrt{\xi}}\right)$$

Modified Higgs couplings go in bad direction. Resonance exchange as well

However ...

$$\begin{split} \Delta \hat{S} &= \frac{g^2}{96\pi^2} \xi \log \left(\frac{8\pi m_W}{gm_h \sqrt{\xi}} \right) + \frac{m_W^2}{m_\rho^2} + \alpha \frac{g^2}{16\pi^2} \xi \,, \\ \Delta \hat{T} &= -\frac{3g'^2}{32\pi^2} \xi \log \left(\frac{8\pi m_W}{gm_h \sqrt{\xi}} \right) + \beta \frac{3y_t}{16\pi^2} \xi \,, \end{split}$$

Modified Higgs couplings go in bad direction. Resonance exchange as well Light Top Partners come to rescue.

[Barbieri, Bellazzini, Rychkov, Varagnolo, 2007]

[Torre, Thamm, AW, for FCC W.G.]

Allowing for a 1/5 cancellation

