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What	 if	 there	 is	 no	 mass	 term	 
from	 the	 beginning?



m2 = 0

This	 condition	 was	 shown	 to	 lead	 to	 symmetry	 breaking	 through	 radiative	 corrections.	 
…	 This	 argument	 is	 quite	 speculative,	 particularly	 since	 no	 theory	 has	 even	 been	 found	 
in	 which	 the	 “zero	 bare	 mass”	 condition	 is	 really	 natural.	 But	 it	 is	 interesting	 to	 pursue	 
the	 consequences	 of	 assuming	 that	 scalars	 satisfying	 this	 condition	 exist.	 …	 

E.	 Witten	 (1981)
The	 final	 blunder	 was	 a	 claim	 that	 scalar	 elementary	 particles	 were	 unlikely	 to	 occur	 in	 
elementary	 particle	 physics	 at	 currently	 measurable	 energies	 unless	 they	 were	 
associated	 with	 some	 kind	 of	 broken	 symmetry.	 …	 But	 this	 claim	 makes	 no	 sense	 
when	 one	 becomes	 familiar	 with	 the	 history	 of	 physics.	 …	 
This	 blunder	 was	 potentially	 more	 serious,	 if	 it	 caused	 any	 subsequent	 researchers	 to	 
dismiss	 possibilities	 for	 very	 larger	 or	 very	 small	 values	 for	 parameters	 that	 now	 must	 
be	 taken	 seriously.	 …The	 lesson	 from	 history	 is	 that	 sometimes	 there	 is	 a	 need	 to	 
consider	 seriously	 a	 seemingly	 unlikely	 possibility.	 

K.	 Wilson	 (2003)
What	 is	 important	 in	 science	 is	 not	 the	 solution	 of	 some	 particular	 scientific	 problems	 of	 
one’s	 own	 day,	 but	 understanding	 the	 world.	 …	 
The	 Alexandrians	 concentrated	 on	 understanding	 specific	 phenomena,	 where	 real	 
progress	 could	 be	 made.	 …	 
Again	 and	 again,	 it	 has	 been	 an	 essential	 feature	 of	 scientific	 progress	 to	 understand	 
which	 problems	 are	 ripe	 for	 study	 and	 which	 are	 not.	 …	 

S.	 Weinberg	 (2015)



One	 simple	 question.	 
Can	 we	 still	 make	 electroweak	 symmetry	 
breaking	 possible	 without	 mass	 term?



Coleman-Weinberg	 Higgs
with	 D	 Chway,	 R	 Dermisek	 and	 TH	 Jung,	 PRL(2014)

start	 from	 classically	 scale	 invariant	 theory

quantum effects

Higgs Potential

classical quantum

Higgs Higgs

with	 D	 Chway,	 R	 Dermisek,	 D	 Mo	 and	 TH	 Jung,	 to	 appear



V (H) = �µ2|H|2 + �|H|4

Higgs	 self	 coupling	 in	 the	 SM
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quartic	 
coupling.



V (�) = m2�†�+ �(�†�)2

m2 = 0

Spontaneous	 symmetry	 breaking	 	 can	 occur	 
by	 radiative	 corrections.

Coleman-Weinberg	 mechanism

(second	 derivative	 of	 V	 at	 the	 origin)



V (�) = �(�†�)2

Starting	 from	 scale	 invariant	 potential

V (�) = �(�)(�†�)2

RG	 improved	 effective	 potential	 is	 then

If	 the	 quartic	 changes	 
sign	 at	 low	 energy,	 
nontrivial	 minimum	 	 

is	 developed
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FIG. 1: Upper plot: In the plane (ζ, λ), the green line corre-
sponds to the condition V ′′(0) = 0, the red to V (v) = V (0)
and the blue to V ′′(v) = 0. Black solid lines correspond to
the indicated values of Mh. Lower plot: Potential for ζ = 1.0
and different values of λ (or Mh) as marked on the vertical
line in upper plot.

with the presence of a tachyonic mass at the ori-
gin, as in the SM. Instead it is triggered by radia-
tive corrections via the mechanism of dimensional
transmutation.

The minimum at the origin becomes a maximum at the
green line. In fact the green line corresponds to the con-
formal case where m2 = 0 and electroweak breaking pro-
ceeds by pure dimensional transmutation (see also [9]).
iv) Finally, in the region above the green line the origin
is a maximum as in the SM, with m2 < 0.

Notice that, while λ > 0 is required in the SM case
(ζ = 0 axis), now λ < 0 is accessible for sufficiently large
ζ. The shape of the potential for the different cases is il-
lustrated by the lower plot of Fig. 1, where ζ = 1 has been
fixed and we vary λ as indicated by the vertical line in the
upper plot of Fig. 1. From bottom-up the potentials have
decreasing values of λ. The lowest potential corresponds
to λ = 0.01 and has the conventional maximum at the
origin. The green potential corresponds to the conformal
case where m2 = 0 (in this particular example also λ is
zero!). The next line corresponds to λ = −0.02 with a
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FIG. 2: Green: Effective potential for the conformal case.
Black: running λ̃ and λ̂, with Q = Mt(h).

barrier between the origin and the electroweak minimum
while for the red potential the two minima become de-
generate. The next line corresponds to the potential for
λ = −0.04 where the electroweak minimum is already
a false minimum, which becomes an inflection point at
the blue line where Mh = 0. Finally the highest line
corresponds to λ = −0.08 and the electroweak extremal
is a maximum (the potential has a minimum somewhere
else, for some ⟨h⟩ > v. If ζ2 were smaller, ζ2 <

∼ h2
t /2, the

potential would instead be destabilized due to λ < 0.).
In order to have a better understanding of the phe-

nomenon of radiative electroweak breaking by dimen-
sional transmutation in this setting consider the confor-
mal case with m2 = 0. Then improve the one-loop effec-
tive potential of Eq. (2) by including the running with the
renormalization scale of couplings and wave functions.
We use for that the SM renormalization group equations
(RGEs) supplemented by the effects of Si loops plus the
RGEs for the new couplings to the hidden sector (see [10]
for details). The RGE-improved effective potential is
scale independent and we can take advantage of that to
take Q = Mt(h) as a convenient choice to evaluate the
potential at the field value h (with all couplings ran to
that particular renormalization scale). This results in a
“tree-level” approximation V ≃ (1/4)λ̂h4 with [11]

λ̂ ≡ λ +
∑

α

Nακ2
α

64π2

[

ln
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h2
t
− Cα

]

, (3)

where the κα’s are coupling constants, defined by the
masses as M2

α = (1/2)καh2. The behavior of the one-loop
potential as a function of h is captured by the “tree-level”
approximation above through the running of λ̂ with the
renormalization scale, linked to a running with h by the
choice Q = Mt(h). To illustrate this, we show in Fig. 2
the effective potential for this conformal case (green lines
in Fig. 1) with m2 = 0 and ζ = 1, together with the
effective quartic coupling λ̂(h). We can see that the scale
of dimensional transmutation is related to the scale at
which the potential crosses through zero. The structure

Espinosa	 and	 Quiros,	 PRD	 (2007)
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Superconductor	 :	 	 
Coherence	 length	 is	 much	 longer	 than	 London	 penetration	 length

Scalar	 QED	 and	 Standard	 Model	 in	 1970s

Radiatively	 generated	 Higgs	 mass	 is	 one	 loop	 
suppressed	 compared	 to	 the	 vector	 boson	 mass
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SM	 with	 W	 and	 Z	 (without	 top)	 :	 mh	 ~	 10	 GeV
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Top	 Yukawa	 prevents	 CW	 mechanism	 in	 the	 SM

Radiative	 symmetry	 breaking	 is	 possible	 
with	 gauge	 or	 mixed	 quartic	 interactions.

low      RG scale    high



New	 particles	 interacting	 with	 Higgs

SM Higgs Scalar S
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in terms of the Lagrangian parameter � as the minimum condition relates � and �.

�
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It is more transparent if we express everything in terms of �(2)
e↵ .
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It is possible to have the radiative electroweak symmetry breaking if the beta function

of the Higgs quartic coupling is positive at the weak scale and � is positive at high energy.

Unfortunately, the beta function of the Higgs quartic is negative due to large top Yukawa

coupling. In the original paper of Coleman and Weinberg, the radiative electroweak symme-

try breaking driven by the gauge coupling has been discussed in the absence of the Yukawa

couplings which was the case at that time since top quark was not discovered yet.

In the presence of the large top Yukawa coupling, we can ask the question of whether it

is possible to realise the original idea of Coleman and Weinberg and what is the condition

for that. Indeed the standard model Higgs quartic turns the sign at the intermediate scale

and the Higgs potential su↵ers from the instability though the possibility of the stable Higgs

potential is not entirely excluded due to the limited precision of the top quark mass.

The presence of new scalar allows a mixed quartic term with the Higgs. The new mixed

quartic gives a positive contribution to the beta function of the Higgs quartic coupling. In

the following, we consider the extension of the Standard Model by including the Standard

Model singlet scalars which only couple to Higgs with the mixed quartic.

III. HIGGS PORTAL

Let us consider the classically scale invariant setup such that we can ignore possible mass

terms. Then the potential of the scalar sector (Higgs + hidden scalar) is given as follows.

5

Scale	 dependence	 of	 	 
the	 beta	 function	 is	 	 
neglected	 here.

	 (precisely	 =	 0.129)

-75%	 (tree)	 +	 175%	 (loop)
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New	 mixed	 quartic	 raises	 Higgs	 quartic	 at	 high	 energy

Higgs	 portal	 with	 extra	 scalar	 S
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FIG. 3. The Higgs quartic coupling (left), its beta function (middle), and the deviation of the e↵ective Higgs cubic coupling
from the SM prediction (right) determined by the observed Higgs boson mass as functions of the mass term for the Higgs
doublet. Two special cases, the standard model Higgs and the Coleman-Weinberg Higgs, are identified by arrows. It includes
next leading order calculation.

k:	 Relative	 strength	 
of	 Higgs	 cubic	 couplings	 
with	 respect	 to	 SM

New	 parameter	 space	 with	 running	 couplings

m=0	 is	 a	 one	 point	 in	 the	 extended	 parameter	 space



Gauge	 extension	 of	 hidden	 sector

SM Higgs Scalar S

Hidden	


gauge,	



fermions
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FIG. 3. Dashed:no fixed point so it eventually blows up. Solid:two fixed points(left:UV fixed point,
right:IR fixed point)
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The beta function of �s is a quardric function of �s. If it has zeros, then �s has two fixed

points. One is UV fixed point and the other is IR fixed point. (Fig. 3) To examine whether

it has zeroes, define the discriminant of it as

D = 36
(N2

c � 1)2

N2
� 12(4 +NS)(

N3
c +N2

c � 4Nc + 2

N2
c

NG +
2N2

c � 4Nc + 2

N2
NG(NG � 1))

You can see the summary plot of D as a function of Nc and N . Here NS = NNG
c .(Fig. 4)
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small	 coupling	 at	 
the	 weak	 scale Arrow	 is	 	 

from	 IR	 to	 UV
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FIG. 1. RG running of quartic couplings in the minimal model. (rigid, dashed, dotted) : �(h,s,hs),

(red, green, blue, orange): NS = (1, 10, 16, 104).

TeV. The situation is not improved very much by increasing NS to 16 or 104. For large

enough number of singlet scalars, the Higgs quartic becomes non-perturbative below 30 TeV

and the perturbative can not be extended beyond 30 TeV. In this minimal setup, 20 TeV

to 30 TeV is the maximum energy scale up to which the description in terms of Higgs and

singlet complex scalars is valid.

D. Extended Model

Landau pole problem of scalar quartic in the minimal model can be cured if the extra

scalar is charged under the hidden gauge group. The hidden gauge coupling can prevent

the growing of the quartic coupling at high energy and all the couplings can be remain

perturbative up to the Planck scale if the couplings are properly chosen. Now we gauge the

SU(NS) such that the extra scalar fields are in the fundamental representations of SU(NS).

In addition, there are spectator fields which can be scalars or fermions which can contribute

to the beta function of the gauge coupling for SU(NS). With the presence of the hidden

gauge coupling, the RG equation of the singlet quartic and the mixed quartic coupling is

modified,

16⇡2d�s
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=

3

4
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2
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hs, (13)

16⇡2d�hs

dt
= · · · , (14)

where g4 the common gauge coupling of SU(NS). The setup has a quasi-fixed point in the

UV for �s/g
2
4. If the running of g4 is not big, the nontrivial quasi-fixed point is predicted

for NS � 3. Therefore, we can start from sizeable couplings of �s and g4 from UV and
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FIG. 1. RG running of quartic couplings in the minimal model. (rigid, dashed, dotted) : �(h,s,hs),

(red, green, blue, orange): NS = (1, 10, 16, 104).

TeV. The situation is not improved very much by increasing NS to 16 or 104. For large

enough number of singlet scalars, the Higgs quartic becomes non-perturbative below 30 TeV

and the perturbative can not be extended beyond 30 TeV. In this minimal setup, 20 TeV

to 30 TeV is the maximum energy scale up to which the description in terms of Higgs and

singlet complex scalars is valid.

D. Extended Model

Landau pole problem of scalar quartic in the minimal model can be cured if the extra

scalar is charged under the hidden gauge group. The hidden gauge coupling can prevent

the growing of the quartic coupling at high energy and all the couplings can be remain

perturbative up to the Planck scale if the couplings are properly chosen. Now we gauge the

SU(NS) such that the extra scalar fields are in the fundamental representations of SU(NS).

In addition, there are spectator fields which can be scalars or fermions which can contribute

to the beta function of the gauge coupling for SU(NS). With the presence of the hidden

gauge coupling, the RG equation of the singlet quartic and the mixed quartic coupling is

modified,

16⇡2d�s

dt
=

3

4

⇣N3
S +N2

S � 4NS + 2

NS

⌘
g44 � 6

⇣N2
S � 1

NS

⌘
g24�s + 4(4 +NS)�

2
s + 2�2

hs, (13)

16⇡2d�hs

dt
= �hs


4�hs + 12�h + (4NS + 4)�s � 3

⇣N2
S � 1

NS

⌘
g24

�
, (14)

where g4 the common gauge coupling of SU(NS). The setup has a quasi-fixed point in the

UV for �s/g
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for NS � 3. Therefore, we can start from sizeable couplings of �s and g4 from UV and
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UV	 fixed	 point IR	 fixed	 point
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1.	 start	 to	 deviate	 
from	 UV	 fixed	 point

2.	 mixed	 quartic	 
increase	 rapidly

3.	 Higgs	 quartic	 	 
driven	 to	 be	 negative

It	 is	 hard	 to	 say	 which	 one	 (1	 or	 2)	 is	 the	 source

Example	 :	 Scalar	 in	 4	 of	 SU(4)	 :	 

UV	 to	 IR



Electroweak	 Baryogenesis
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FIG. 1: Upper plot: In the plane (ζ, λ), the green line corre-
sponds to the condition V ′′(0) = 0, the red to V (v) = V (0)
and the blue to V ′′(v) = 0. Black solid lines correspond to
the indicated values of Mh. Lower plot: Potential for ζ = 1.0
and different values of λ (or Mh) as marked on the vertical
line in upper plot.

with the presence of a tachyonic mass at the ori-
gin, as in the SM. Instead it is triggered by radia-
tive corrections via the mechanism of dimensional
transmutation.

The minimum at the origin becomes a maximum at the
green line. In fact the green line corresponds to the con-
formal case where m2 = 0 and electroweak breaking pro-
ceeds by pure dimensional transmutation (see also [9]).
iv) Finally, in the region above the green line the origin
is a maximum as in the SM, with m2 < 0.

Notice that, while λ > 0 is required in the SM case
(ζ = 0 axis), now λ < 0 is accessible for sufficiently large
ζ. The shape of the potential for the different cases is il-
lustrated by the lower plot of Fig. 1, where ζ = 1 has been
fixed and we vary λ as indicated by the vertical line in the
upper plot of Fig. 1. From bottom-up the potentials have
decreasing values of λ. The lowest potential corresponds
to λ = 0.01 and has the conventional maximum at the
origin. The green potential corresponds to the conformal
case where m2 = 0 (in this particular example also λ is
zero!). The next line corresponds to λ = −0.02 with a
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FIG. 2: Green: Effective potential for the conformal case.
Black: running λ̃ and λ̂, with Q = Mt(h).

barrier between the origin and the electroweak minimum
while for the red potential the two minima become de-
generate. The next line corresponds to the potential for
λ = −0.04 where the electroweak minimum is already
a false minimum, which becomes an inflection point at
the blue line where Mh = 0. Finally the highest line
corresponds to λ = −0.08 and the electroweak extremal
is a maximum (the potential has a minimum somewhere
else, for some ⟨h⟩ > v. If ζ2 were smaller, ζ2 <

∼ h2
t /2, the

potential would instead be destabilized due to λ < 0.).
In order to have a better understanding of the phe-

nomenon of radiative electroweak breaking by dimen-
sional transmutation in this setting consider the confor-
mal case with m2 = 0. Then improve the one-loop effec-
tive potential of Eq. (2) by including the running with the
renormalization scale of couplings and wave functions.
We use for that the SM renormalization group equations
(RGEs) supplemented by the effects of Si loops plus the
RGEs for the new couplings to the hidden sector (see [10]
for details). The RGE-improved effective potential is
scale independent and we can take advantage of that to
take Q = Mt(h) as a convenient choice to evaluate the
potential at the field value h (with all couplings ran to
that particular renormalization scale). This results in a
“tree-level” approximation V ≃ (1/4)λ̂h4 with [11]

λ̂ ≡ λ +
∑

α

Nακ2
α

64π2

[

ln
κα

h2
t
− Cα

]

, (3)

where the κα’s are coupling constants, defined by the
masses as M2

α = (1/2)καh2. The behavior of the one-loop
potential as a function of h is captured by the “tree-level”
approximation above through the running of λ̂ with the
renormalization scale, linked to a running with h by the
choice Q = Mt(h). To illustrate this, we show in Fig. 2
the effective potential for this conformal case (green lines
in Fig. 1) with m2 = 0 and ζ = 1, together with the
effective quartic coupling λ̂(h). We can see that the scale
of dimensional transmutation is related to the scale at
which the potential crosses through zero. The structure

3

of the potential is then determined by the evolution of λ̂:
for small h, λ̂ < 0 destabilizes the origin while, for larger
h, λ̂ > 0 stabilizes the potential curving it upwards in
the usual way.

We can define a different effective coupling, λ̃, by the
approximation ∂V/∂h ≃ λ̃h3, which fixes λ̃ to be given
by (3) with Cα → Cα − 1/2. Fig. 2 shows that λ̃ crosses
through zero precisely at the minimum of the poten-
tial. This shows then how the electroweak scale is gen-
erated by dimensional transmutation: a suitably defined
effective quartic Higgs coupling turns from positive to
negative values, with v given by the implicit condition
λ̃(v) = 0. Needless to say, such running of λ̃ would not
be possible in the SM and is due to the effect of ζ in the
RGEs, which counterbalances the effect of ht.

3. Electroweak phase transition. In the presence
of hidden sector fields Si coupled to the SM Higgs as
in Eq. (1) the electroweak phase transition is strength-
ened by: a) The thermal contribution from Si, if ζ is
large enough. This fact was known already [12, 13]. b)
The fact that, in part of the (ζ, λ)-plane, there is a bar-
rier separating the origin (energetically favored at high
temperature) and the electroweak minimum at zero tem-
perature. This effect is new [14].

To study the strength of the phase transition we con-
sider the effective potential at finite temperature, T . In
the one-loop approximation and after resumming hard-
thermal loops for Matsubara zero modes, the thermal
correction to the effective potential ∆VT is given by

T 4

2π2

∑

α

Nα

∫ ∞

0

dx x2 log
[

1 − εαe−
√

x2+M2
α

/T 2

]

+
T

12π

∑

α

1 + εα

2
Nα

{

M3
α −

[

M2
α + Πα(T 2)

]3/2
}

, (4)

where εα = +1(−1) for bosons (fermions) and Πα(T 2)
is the thermal mass of the corresponding field (for more
details see Ref. [10]). The considered approximation is
good enough for our purposes since, as we will see, the
phase transition is strongly first order and mainly driven
by the contribution to the thermal potential of the Si

fields for which the thermal screening ΠS is enough to
solve the infrared problem. Notice that the second term
in Eq. (4), responsible for the thermal barrier, takes care
of the thermal resummation for bosonic zero modes.

We define Tc as the critical temperature at which the
origin and the non-trivial minimum at ⟨h(Tc)⟩ become
degenerate, calling its ratio R ≡ ⟨h(Tc)⟩/Tc. The baryo-
genesis condition for non-erasure of the previously gener-
ated baryon asymmetry requires R >

∼ 1 [15]. In general,
identifying the critical temperature with the real tunnel-
ing temperature (which is smaller) underestimates R so
that our approximation provides a conservative estimate
of the order parameter R. For a more detailed analysis
see Ref. [10].

We illustrate in Fig. 3 the behavior of the effective po-
tential around the critical temperature for a fixed Higgs
mass (Mh = 125 GeV) and for two typical cases. In the
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FIG. 3: Effective potential around the EW phase transition,
for Mh = 125 GeV. Upper plot: ζ = 0.8 and T = 110.85,
108.00 and 105.00 GeV, with R ≃ 1.37. Lower plot: Same for
ζ = 1.365 and T = 50.00, 40.00, 30.08 and 0 GeV with R ≃ 8.

upper plot we consider a case where the strength of the
phase transition is only due to the thermal barrier from
Si fields (with ζ = 0.8) with no T = 0 barrier, leading to
R ≃ 1.37. In the lower plot, with ζ = 1.365, the barrier
persists all the way down to T = 0 making the value of
R much larger (R ≃ 8). The dependence of R with ζ for
different values of Mh is displayed in Fig. 4 where the
strong enhancement in the values of R produced inside
the region where the barrier between the origin and the
electroweak minima persists at T = 0 is apparent (the
square dots mark in each case the region beyond which
there is a barrier at T = 0). The answer to the general
question of what is the upper bound on the Higgs mass to
avoid baryon asymmetry washout depends on how large
ζ can be, which in turn depends on the cutoff Λ. A low
cutoff, e.g. Λ ∼ 1 − 10 TeV, allows values of ζ up to
1.3 − 1.8 while a higher cutoff Λ ∼ 105 GeV would only
allow values of ζ <

∼ 1.
A pending issue is how the baryon asymmetry is cre-

ated (perhaps by the hidden sector) since within the SM
the amount of CP violation, given by the CKM phase,
is admittedly insufficient [16] (although a way out as-
sociated with physics solving the flavor problem at a
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FIG. 3: Effective potential around the EW phase transition,
for Mh = 125 GeV. Upper plot: ζ = 0.8 and T = 110.85,
108.00 and 105.00 GeV, with R ≃ 1.37. Lower plot: Same for
ζ = 1.365 and T = 50.00, 40.00, 30.08 and 0 GeV with R ≃ 8.

upper plot we consider a case where the strength of the
phase transition is only due to the thermal barrier from
Si fields (with ζ = 0.8) with no T = 0 barrier, leading to
R ≃ 1.37. In the lower plot, with ζ = 1.365, the barrier
persists all the way down to T = 0 making the value of
R much larger (R ≃ 8). The dependence of R with ζ for
different values of Mh is displayed in Fig. 4 where the
strong enhancement in the values of R produced inside
the region where the barrier between the origin and the
electroweak minima persists at T = 0 is apparent (the
square dots mark in each case the region beyond which
there is a barrier at T = 0). The answer to the general
question of what is the upper bound on the Higgs mass to
avoid baryon asymmetry washout depends on how large
ζ can be, which in turn depends on the cutoff Λ. A low
cutoff, e.g. Λ ∼ 1 − 10 TeV, allows values of ζ up to
1.3 − 1.8 while a higher cutoff Λ ∼ 105 GeV would only
allow values of ζ <

∼ 1.
A pending issue is how the baryon asymmetry is cre-

ated (perhaps by the hidden sector) since within the SM
the amount of CP violation, given by the CKM phase,
is admittedly insufficient [16] (although a way out as-
sociated with physics solving the flavor problem at a
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high-scale was proposed in [17]). An interesting possi-
bility from the low energy point of view is the appear-
ance of CP-violating effective operators. For instance the
dimension-six operator g2|H |2FF̃/(32π2Λ2) can gener-
ate the baryon-to-entropy ratio (for maximal CP viola-
tion) [18] nB/s ∼ 3.1κ×10−9 (Tc/Λ)2, where κ ≃ 0.01−1,
which is roughly consistent with WMAP data for Λ in the
TeV range.

4. Conclusion. In this letter we have explored new
and dramatic effects that a hidden sector, singlet under
the SM gauge group, can have concerning electroweak
symmetry breaking and electroweak baryogenesis. Com-
pletely new patterns for the Higgs potential and new ways
of radiative breaking by dimensional transmutation are
found, some of them indirectly leading to a very strong
EW first order phase transition. For such a strong first-
order phase transition the model can provide a strong
signature in gravitational waves [19]. Moreover if the
hidden sector has a global U(1) symmetry that guaran-
tees the stability of Si-scalars (as we are assuming) and
some subsector of it has a large invariant mass it can also
provide good candidates for Dark Matter [10, 20].
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Higgs	 cubic	 coupling	 at	 the	 ILC
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patible with the Standard Model due to large top Yukawa coupling which makes the Higgs

quartic beta function to be negative. The presence of the hidden scalar makes it possible.

In the minimal setup, 125 GeV Higgs mass implies the rapid running of the Higgs quartic

coupling and the quartic couplings blow up at the scale very close to the weak scale. This

problem can be avoided if there are extra fermions which have large Yukawa couplings with

the Higgs and hidden scalars. In this case the model can be extended up to very high scale

without having any instability or Landau pole problems.

Qualitatively di↵erent mechanism of the electroweak symmetry breaking can be tested by

measuring the Higgs self coupling which is possible by measuring the Higgs pair production.

The invariant mass distribution of the Higgs pair provides an extra information to determine

the Higgs cubic coupling.
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Fig. 18: Expected relative statistical accuracy in % on the trilinear Higgs self-coupling for e+e� (blue) and
pp (red) colliders at the high-energy frontier. The accuracy estimates are given, from left to right, for ILC500,
TLEP500, HL-LHC, ILC1000, HE-LHC, CLIC and VHE-LHC, for integrated luminosities of 0.5, 1, 3, 1, 3, 2,
and 3 ab�1, respectively.

could have a say on the quartic self-coupling [85], needed to fully understand Electroweak Symmetry
Breaking.
In summary, the potential of the FCC project for Higgs physics cannot be challenged by any other projects
on the market.

5.3 Direct search for new physics
As seen above, the case for e+e� collisions with centre-of-mass energy of 500 GeV and above is not
compelling for the study of the H(126) particle alone. A stronger motivation would exist if a new particle
were found (or inferred) at LHC during the next run at 13-14 TeV, if and only if e+e� collisions could
bring substantial new information about it.

Typically, e+e� colliders can pair-produce new particles with masses up to half the centre-of-mass
energy, if they are either electrically charged or have a non-vanishing coupling to the Z. The reach of
ILC500, ILC1000 and CLIC is therefore limited to particles lighter than 250, 500 and 1500 GeV, respec-
tively. The lowest threshold for new particles could be that for pair-production of dark matter particles,
such as the lightest neutralinos of supersymmetric models, through their Z or Higgs couplings, in asso-
ciation with an initial-state-radiation photon. This search was performed at LEP, but was limited by the
kinematic reach and the large background from conventional neutrinos. Similar searches are performed
at the LHC (mono-photon, mono-jet, accompanied with missing energy), but are competitive with as-
trophysical searches only for very small dark-matter particle masses. The high luminosity of TLEP up
to centre-of-mass energies of 350 to 500 GeV, associated with the absence of photon background from
beamstrahlung, may provide a promising opportunity to extend the sensitivity of such single-photon
searches for dark matter.

The absence of new phenomena at the LHC so far has reduced the prospects for direct new physics
discovery in e+e� collisions below 1 TeV in the centre of mass (with few exceptions like the aforemen-
tioned possible observation of light dark matter). The next LHC run at 13-14 TeV, to start in 2015, will
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FIG. 1: Sample counterterm diagrams that depend on the
Higgs self-energy.

O(0.5%) uncertainty [15]. Thus Higgs boson coupling
measurements can constrain natural new physics for
generic top partners even when they are neutral under

the SM gauge group. To see the relevant e↵ects clearly,
consider the theory of Eq. (3) when all scalar top part-
ners, �i, are gauge singlets. In the limit m� � v, we may
integrate out the �i and express their e↵ects in terms
of an e↵ective Lagrangian below the scale m� involv-
ing only Standard Model fields with appropriate higher-
dimensional operators. At one loop, integrating out the
�i leads to shifts in the wave-function renormalization
and potential of the Higgs doublet H as well as opera-
tors of dimension six and higher. Most of these shifts
and operators are irrelevant from the perspective of low-
energy physics, except for one dimension-six operator in
the e↵ective Lagrangian:

Leff = LSM +
cH
m2

�

✓
1

2
@µ|H|2@µ|H|2

◆
+ . . . (10)

where the ellipses include additional higher-dimensional
operators that are irrelevant for our purposes. Match-
ing to the full theory at the scale m�, we find cH(m�) =
n�|��|2/96⇡2. Although this operator may be exchanged
for a linear combination of other higher-dimensional op-
erators using field redefinitions or classical equations of
motion, the physical e↵ects are unaltered. Below the
scale of electroweak symmetry breaking, Eq. (10) leads
to a shift in the wave-function renormalization of the
physical scalar h as in Eq. (2), with �Zh = 2cHv2/m2

�.
Canonically normalizing h alters its coupling to vectors
and fermions, leading to a measurable correction to, e.g.,
the hZ associated production cross-section

��Zh = �2cH
v2

m2
�

= �n�|��|2
48⇡2

v2

m2
�

. (11)

where we have defined ��Zh as the fractional change in
the associated production cross section relative to the SM
prediction, which by design vanishes for the SM alone.
Since n�|��|2 is required to be large in order to cancel the
top quadratic divergence, this e↵ect may be observable
in precision measurements of �Zh despite arising at one
loop.

While this e↵ective Lagrangian approach makes the
physical e↵ect transparent, naturalness dictates that
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FIG. 2: Scalar top-partner corrections to the Higgs associ-
ated production cross-section at a 250 GeV linear collider as
a function of the top-partner mass m� in the e↵ective the-
ory of naturalness of Eq. (3). Corrections are shown for
n� = 1, .., 6 top partners. Estimates for the measurement
precision of 2.5% [22, 23] and 0.5% [29] are also shown. It
is remarkable that with current precision estimates a large
portion of model-independent parameter space for Higgs nat-
uralness can be probed. In particular, if one compares with
the tuning estimates of Eq. (9), this broadly corresponds to
probing 10% tuned regions for a single scalar top partner and
close to 25% tuned regions for n� = 6 scalar top partners as
in SUSY. Optimistically, if the precision could be improved to
��Zh ⇠ 0.1%, then virtually all parameter space for generic
natural scalar theories with up to ⇠ 10% tunings could be
probed.

m� ⇠ v, and threshold corrections to Eq. (10) may be
large and a complete calculation is required. In the on-
shell renormalization scheme, the Higgs self-energy en-
ters through the counter-term part of the renormalized
e+e� ! hZ amplitude via the diagrams depicted in
Fig. 1. Thus the hG0Z and hZZ vertices receive correc-
tions from the Higgs wave-function renormalization.10

For scalar top partners the Higgs wave-function renor-
malization arises at one loop through scalar trilinear cou-
plings, which gauge invariance relates to the quartic ver-
tices, which are in turn directly relevant for the cancel-
lation of the quadratic divergences in �m2

h.
At one loop the e↵ective theory of naturalness defined

in Eq. (3) leads to a correction to the associated produc-
tion cross-section of the form [15]

��Zh = n�
|��|2v2
8⇡2m2

h

(1 + F (⌧�)) (12)

=
9�2

tm
2
t

2⇡2n�m2
h

(1 + F (⌧�)) (13)

10 See e.g. Ref. [31] for a complete list of SM Feynman rules.

Suppression	 of	 Higgs	 couplings	 to	 the	 SM
Expected	 precision	 for	 hZZ	 

LHC	 :	 2%	 to	 5%	 
Higgs	 factory	 1%	 to	 0.4%
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=
Z

p2 �m2
h + imhZ�h

expansion	 at	 the	 resonance	 
can	 not	 be	 valid	 for	 off-shell



Z defined as derivative of G

Z' defined by integrating spectral density

Ns
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Two	 definitions	 agree	 with	 each	 other

Z	 from	 the	 derivative	 of	 the	 self	 energy

Z	 from	 the	 spectral	 density

Z�1 � 1 =
d⌃(p2)

dp2

����
m2

ph

Z =
X

i=visible

Z
dp2⇢i(p
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Suppressed	 ZZh	 coupling	 as	 an	 invisible	 decay

Ns

Z defined as derivative
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Off-shell	 Higgs	 decay	 :	 VBF
h*V

V
S
S

q

q

Ms Ms

(e.g.,N=10,Ms=250	 GeV)

100	 TeV

N=100	 	 	 	 	 	 	 	 N=10

LHC	 14	 TeV

p
Ns�hs

N=2

p
Ns�hs

5�

5�

2�
2�

v

E
suppression	 for	 scalar	 cubic
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Spectral	 density

In	 reality,	 	 
much	 broader	 distribution



Z

p2 �m2
h + i✏

+
1� Z

p2 � 4m2
S + i✏

Physics	 of	 Higgs	 with	 singlets	 using	 spectral	 density
1

p2 �m2
h + ⌃(p2)

=

Z 1

0
dq2

⇢(q2)

p2 � q2 + ı✏

schematically	 the	 momentum	 dependence	 is	 captured	 by	 

is	 approximated	 by	 delta	 function

⇢(p2) ' Z�(p2 �m2
h) + (1� Z)�(p2 � 4m2

S)



Electroweak	 precision

�S = (1� Z)

1

6⇡
log

2mS

mh

�T = �(1� Z)

3

8⇡ cos

2 ✓W
log

2mS

mh

Ms 
(GeV)

Z 1-Z T
Ns=10 250 0.95 0.05 -0.011
Ns=40 175 0.90 0.10 -0.013

Ns=100 140 0.85 0.15 -0.020
Ns=300 120 0.75 0.25 -0.022

Preliminary	 result



MS = 250(
10

NS
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1
4 GeV

Summary

Singlet	 mass

On-shell	 suppression ��Zh = 5(
NS

10
)

1
2 %

Higgs	 pair	 production

reach	 :	 250	 GeV	 	 
	 VBF	 from	 LHC	 14

95%	 CL	 on	 4~10%	 
from	 LHC	 14

(1~2%	 from	 ILC)

50%	 from	 LHC14	 
13%	 from	 ILC	 1TeV

�(3)
CW =

5

3
�SM

Electroweak	 precision �T < �0.02 maximum	 at	 Ns=330

NS � 10

NS � 10 or 40

NS  40

all NS



Conclusions

Quantum	 loop	 can	 explain	 the	 electroweak	 symmetry	 breaking.

vs�↵�2 + ��4 �4
log

�

h�i

Ginzburg-Landau Coleman-Weinberg



Conclusions

Quantum	 loop	 can	 explain	 the	 electroweak	 symmetry	 breaking.

Even	 though	 there	 is	 no	 mixing	 with	 the	 singlets,	 the	 off-shell	 
physics	 is	 very	 similar	 to	 mixing	 case.

vs�↵�2 + ��4 �4
log

�

h�i

Ginzburg-Landau Coleman-Weinberg

(2MS instead of MS)

LHC14	 can	 cover	 Ns>10,	 only	 the	 crazy	 parameter	 space.
Singlets	 coupled	 strongly	 to	 the	 Higgs	 would	 survive	 after	 LHC14.



At present, the bound on invisible decays of the Higgs assuming the SM 
production rate stands at about 20%. This corresponds to a limit on the 
top partner mass of about 500 GeV. The bound on tuning is only at the 
level of 1 part in 4.  (Burdman, ZC, Harnik, de Lima & Verhaaren) 

As the indirect (and direct) bounds on invisible decays improve, the 
bound on the top partner will be increased. However, even with 3000 fb-1 
at 14 TeV the bound on tuning is only expected to be about 1 part in 10.   

Coleman-Weinberg	 vs	 Twin	 phenomenology
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Suppression	 of	 Higgs	 couplings	 disappear	 at	 high	 energy	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 .



Thank	 you
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Unstable	 particles

Unitarity	 of	 S-matrix	 requires	 only	 stable	 particles

R.	 Peierls	 1955	 
J.	 Schwinger	 1960	 
M.	 Veltman	 1964

Narrow	 width	 approximation(NWA)	 :	 	 
Unstable	 particles	 are	 treated	 as	 if	 it	 is	 stable	 as	 long	 as	 the	 
decay	 width	 is	 much	 smaller	 than	 its	 mass

NWA	 breaks	 down	 when	 the	 resonance	 is	 at	 a	 threshold



Unstable	 particles	 :	 Factorization

Unstable Particles near Threshold

Dongjin Chway,1, ⇤ Tae Hyun Jung,1, † and Hyung Do Kim1, 2, ‡

1
Department of Physics and Astronomy and Center for Theoretical Physics,

Seoul National University, Seoul 151-747, Korea

2
Institute for Advanced Study, Princeton, NJ08540, USA

We propose an e�cient way to treat the case where mother particle mass is almost the same with
the sum of its daughter particle masses. We call such a decay type II as it shows totally di↵erent
physics compared to ordinary type I cases. Depending on the type of decay channel, the shape of
resonance signal changes dramatically and the decay is non-exponential. However, we still can use
narrow width approximation with appropriately extended definition of branching ratio and its wave
function renormalization factor for unstable particles.

�

n

2

1

�

FIG. 1. Feynman diagram of 00 ! 1� ! 123.

Introduction

In quantum field theory, one way to find a new par-
ticle is searching for a resonance enhancement in cross
sections. In various s-channel processes, each transition
amplitude includes the propagator of a new particle and
it has a peak corresponding to the resonant external mo-
menta.

In this letter, we explore exceptional feature of res-
onance that can arise when the mass spectrum of the
theory is finely tuned such that mass of mother particle
is almost the same with the sum of two daughter particles
masses. In this case, Breit-Wigner approximation does
not stand any longer. For example, imaginary part of
self energy at its mass does not match with its inverse of
half-lifetime. Moreover usual wave function renormaliza-

tion which is defined by inverse of derivative of resummed
propagator at its mass cannot be used because it is ill-
defined.
So we clarify the definition of boundary that can distin-

guish stable and unstable particle, wave function renor-
malization factor of unstable particles and their branch-
ing ratios. Also we distinguish this abnormal decay chan-
nels as type II decay to make a contrast to ordinary de-
cays, type I decay.
Notations and Definitions Theoretically, Dyson re-
summation of the propagator is useful to study reso-
nances. Resumming all one particle irreducible(1PI) self
energy diagrams ⌃(p2) into its propagator, we obtain

G(p2) =
1

p

2 �m

2

r � ⌃(p2)
, (1)

wherem2

r is renormalized mass of the scalar particle. Def-
inition of physical mass m

ph

is m2

ph

⌘ m

2

r+Re
�
⌃(m2

ph

)
�
,

and then we can write (1) as

G(p2) =
1

p

2 �m

2

ph

��⌃(p2)
, (2)

where �⌃(p2) = ⌃(p2) � Re
⇣
⌃(m2

ph

)
⌘
. We denote in-

dex a standing for individual decaying channel. Optical
theorem connects each decaying channel with each self
energy diagram,

p
p

2�a(p
2) = �Im⌃a(p

2) (3)

where �a(p2) is decay rate of decay channel a where the
mother particle’s square mass is p2 without multiplying its

wave function renormalization factor. 1 We also denote
�(p2) =

P
a �a(p2), �a = �a(m2

ph

) and � = �(m2

ph

).
Quantum field theory tells us that spectral density

function, ⇢(p2) can be obtained by imaginary part of its

1 If Breit-Wigner approximation is valid, then Z
P

a �a corre-
sponds to physical decay rate and also the half-width of the res-
onance where Z is wave function renormalization factor. We use
this unconventional notation because of convenience for latter
discussions.
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Z S
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min
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Z S
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S
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⇢�(S)
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Wave	 function	 renormalisation	 	 
vs.	 Branching	 ratio
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for	 relevant	 decay	 modes



Branching	 ratios	 (threshold	 at	 resonance)
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Non-exponential	 decay
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Mass	 and	 width	 of	 unstable	 particles

Complex	 mass/pole	 scheme

The	 Dyson	 resumed	 propagator	 has	 a	 pole	 in	 the	 unphysical	 
second	 Riemann	 sheet.	 
The	 real	 value	 is	 the	 mass	 and	 the	 imaginary	 value	 is	 the	 width.

In	 the	 previous	 example,	 there	 are	 two	 solutions	 and	 two	 
physical	 widths	 correspond	 to	 the	 shift	 in	 the	 real	 value	 rather	 
than	 the	 imaginary	 value.

S⇤ = M2 � iM�



Mass	 and	 width	 of	 unstable	 particles

Complex	 mass/pole	 scheme

Threshold

Poles	 expected	 from	 the	 physical	 widths	 

Complex	 poles
branch	 cut

s = p2

The	 mass	 and	 width	 obtained	 from	 the	 complex	 pole	 
does	 not	 carry	 any	 physically	 meaningful	 information.


