Search for non-prompt LeptonJets

COLLIDER CROSS-TALK CERN - 26/03/2015

Antonio Policicchio (INFN LNF/CS)

Specific model for limit-setting, even though the rest of the analysis is model-independent
 Used two FRVZ models (kinetic mixing portal) as benchmarks with Higgs production via gg fusion

• Exclusion limits on Higgs [σ x branching fraction to LJs] in benchmark models, as function of γ_d lifetime

FRVZ model	Excluded $c\tau$ [mm]
	BR(10%)
$H o 2\gamma_{ m d} + X$	$14 \le c\tau \le 140$
$H \to 4\gamma_{ m d} + X$	$15 \le c\tau \le 260$

 Interpretation os ATLAS results as exclusion contours in [γ_d mass, ε] plane

- Detection efficiency tables obtained with the LJ gun MC tool
- Useful for "recasting" analysis using somewhat different model assumptions

Backup

90% upper limits on σ x BR for FRVZ models

The likelihood-based simultaneous CLs ABCD method is used to set 90% CL upper limit on the cross section times branching ratio ($\sigma \times BR$) for the proc Higgs $\rightarrow 2\gamma_d + X$ and Higgs $\rightarrow 4\gamma_d + X$

- •simultaneous data-driven background estimation and signal hypothesis test in the signal and control regions (from stat. forum https://twiki.cern.ch/tvpub/AtlasProtected/ATLASStatisticsFAQ/ABCD.pdf)
- •takes into account contaminations from other sources of background (cosmics) and possible signal leakages in the control regions
- •all systematics included

Limits as a function of the y_d lifetime

- •evaluate the detection efficiency as a function of the decay position L_{xy} of the γ_d for the simulated FRVZ models with lifetime $c\tau_0$
- •generate a large numbers of pseudo experiments with different cτ (ranging from 0.5 to 4750 mm)
- •for each γ_d extract the p_T according to the FRVZ distributions at truth level and decay time c·t from an exponential distribution with lifetime cτ
- •compute decay position L_{xy} and weight by the detection probability of the γ_d
- •compute at the end the averaged integrated efficiency for a given cτ
- •this is done for a c τ and at the same time for the c τ_0 of the reference FRVZ sample
- •from the ratio of the two efficiencies, rescale the number of selected events of the FRVZ sample to the one expected from each cτ
- •Two possible sources of systematics:
 - resolution effects
 - compare truth γ_d p_T distribution with the reconstructed one (resolution effects ~ 10%-20%)
 - variation of the number of estimated events was below 1% level
 - •statistics of the detection efficiency (Lxy) tables
 - additional 10% systematics il CLs limit setting

Major Backgrounds (I)

- QCD multi-jets
 - Outs:
 - Small EM fraction
 - Narrow jet width
 - Track isolation around LJ direction in ID
 - Dijet background estimation: data-driven method, ABCD
 - Investigate use of BDT multivariate technique for Run 2
 - Also investigate use of jet substructure, possibly using particlealgorithms

Major Backgrounds (II)

- Cosmic ray muons
 - Cuts:
 - Perigee parameters of muon tracks
 - Jet timing
 - Background estimation: data-driven, using empty bunch crossings
 - For Run 2, investigate cosmic muon bundle removal
- Beam-induced
 - Some cuts available at the trigger level
 - For Run 2, investigate removal using muon segments in EndCap to further reduce BIB

Major Systematics

Cosmic-ray bg estimation	22%
Multi-jet bg estimation	15%
p_{T} resolution for γ_{d}	10%
Higgs production σ	8%
Trigger	5.8% (multi-muon), >11% (CalRatio)
Muon reco efficiency	5.4%
Pile-up effect on isolation	4.1%
Luminosity	2.8%
JES	0.9% - 1.7%

Cut-flow

Requirement	Description
Two reconstructed LJs	select events with at least two reconstructed LJs
η range (TYPE1)	remove jets with $ \eta >2.5$
η range (TYPE2)	remove jets with $ \eta > 2.5$ and $1.0 < \eta < 1.4$
EM fraction (TYPE2)	require EM fraction of the jet < 0.1
Jet width W (TYPE2)	require width of the jet < 0.1
Jet timing (TYPE1/TYPE2)	require jets with timing -1 ns $< t < 5$ ns
NC muons (TYPE0/TYPE1)	require muons without ID track match
ID isolation	$ ext{require max}\{\Sigma p_{ ext{T}}\} \leq 3 ext{GeV}$
$\Delta\phi$	require $ \Delta \phi \ge 1$ rad between the two LJs

Cut-flow on data

LJ pair types	0-0	0-1	0-2	1-1	1-2	2-2	All
Trigger selection	$9.226 imes 10^6$						
Good primary vertex	9.212×10^{6}						
Two reconstructed LJs	946	1771	16676	1382	19629	82653	123057
η range (TYPE1/TYPE2)	946	1269	5063	701	3838	25885	37702
EM fraction (TYPE2)	946	1269	393	701	172	4713	8194
Jet width W (TYPE2)	946	1269	350	701	148	3740	7154
Jet timing (TYPE1/TYPE2)	946	1054	216	547	92	578	3433
NC muons (TYPE0/TYPE1)	27	3	42	5	5	578	660
ID isolation	12	0	19	4	3	160	198
$ \Delta \phi $	11	0	11	4	3	90	119

Background estimation

ALL LJ PAIR TYPES

Data Type	Events in B	Events in C	Events in D	Expected Events in A
Cosmic-ray data	0	0	60 ± 13	40 ± 10
Data (cosmic rays subtracted)	362 ± 19	99 ± 10	19 ± 16	70 ± 58

TYPE 2-2 EXCLUDED

Data Type	Events in B	Events in C	Events in D	Expected events in A
Cosmic-ray data	0	0	3 ± 3	29 ± 9
Data (cosmic rays subtracted)	29 ± 5	15 ± 4	6 ± 4	12 ± 9