

Efficient electron cloud mitigation with novel low SEY laser-engineered surface structures (LESS)

Oleg B. Malyshev¹, Reza Valizadeh¹, Svetlana. A. Zotlovskaya^{1,2}, W. Allan Guillespie² and Amin Abdolvand²

¹ASTeC Vacuum Science Group, STFC Daresbury Laboratory, UK ²School of Engineering, Physics and Mathematics, University of Dundee, Dundee, UK

26 Feb 2015 A&T seminar, CERN

Part II. Evaluation of LESS for particle accelerator application

- SEY measurements
- Surface chemistry
- Geometrical factor
- Vacuum properties
- Surface resistance

STFC

UK Astronomy Technology Centre Edinburgh, Scotland

Polaris House Swindon, Wiltshire

Chilbolton Observatory Stockbridge, Hampshire

Daresbury Laboratory Daresbury Science and Innovation Campus Warrington, Cheshire

Rutherford Appleton Laboratory Harwell Science and Innovation Campus Didcot, Oxfordshire

26 Feb 2015 **A&T seminar, CERN** 3

STFC Daresbury Laboratory

- ASTeC Vacuum Science Group
	- SEY measurement and surface analysis facility
	- Electron stimulated desorption
	- RF impedance measurement facility
	- Expertise in e-cloud mitigation in particle accelerators
	- Experience in studies related to and design of particle accelerator vacuum system with an e-cloud problem such as SSC, LHC, ILC, etc.
- STFC grant for Proof of Concept (PoC) work

Main Goal

- Mitigation of beam-induced electron multipacting and electron cloud built-up in a particle accelerator beam chamber due to photo- and secondary electron emission
	- to reduce beam instability, beam losses, emittance growth, reduction in beam life time, or heat loads on cryogenic vacuum chamber

- 2. Multipactor mitigation in RF wave guide and space-related high power RF hardware.
- 3. Reducing PEY and SEY in other instruments and devices, where necessary

Existing Mitigation method

By active means:

- Weak solenoid field (10-20 G) along the vacuum chamber
- Biased clearing electrodes
- Charged particle beam train parameters
	- Bunch charge and sizes
	- Distance between bunches

Advantages:

- Solenoids can be installed on existing facilities (if there is a space for them)
- Beam parameters have some flexibility
- Disadvantages:
- Requires:
	- Controllers
	- Power supplies
	- Cables
	- Vacuum compatible electric feedthroughs
- I.e. should be avoided if possible

By passive means:

- Low SEY material
- Low SEY coating
- Grooved surface
- Special shape of vacuum chamber
- An antechamber allows reducing PEY Advantages:
- No Controllers,
- No power supplies,
- No cables

Disadvantages:

- In-vacuum deposition
- Difficult to apply on existing facilities
- Durations of surface treatments
- Cost

Science & Technology
Facilities Council **Existing Mitigation method**

By active means:

- Weak solenoid field along the vacuum chamber
- Biased electrodes

Advantages:

• Solenoids can be installed on existing facilities (if there is a space for them)

Down side:

- It requires
	- **Controllers**
	- power supplies
	- cables
	- Vacuum compatible electric feedthroughs
	- i.e. should be avoided if possible:

Solenoids at KEKB, Japan

Biased electrodes at DA Φ NE, Italy

26 Feb 2015 A&T seminar, CERN 7

Existing Mitigation methods

• Coating with Low SEY Material

a-C at CERN

26 Feb 2015 A&T seminar, CERN 8

Existing Mitigation methods

• Coating with a low SEY material with submicron size structure

Ag plating, ion etched with Mo Mask I. Montero et.al, Proc. e-Cloud12

Ti-Zr-V black

Science & Technology
Facilities Council **Existing Mitigation methods**

- Modifying the surface geometry
- making mechanical grooves

By A. Krasnov and By L Wang et.al

KEKB vacuum chamber (by courtesy of Y. Suetsugu)

- Modifying the vacuum chamber geometry
	- making an antechamber

ILC wiggler vacuum chamber

Introducing new technology

• Laser treatment in air or noble gas atmosphere

Laser Treated Metal Surface

Aluminium Copper Stainless Steel

Nd:YVO4 Laser

- Pulse length =12 ns at Repetition Rate = 30 kHz
	- For Aluminium
		- Max Average Power = 20 W at λ =1064 nm
	- For Copper
		- Max Average Power = 10 W at λ = 532 nm
- Argon or air atmosphere
- Beam Raster scanned in both horizontal and vertical direction
- With an average laser energy fluence of just above the ablation threshold of the metal.

SEY Measurements

Ground

$$
\delta = \frac{I_F}{I_P} = \frac{I_F}{I_F + I_S}
$$

IP **is the primary beam current** *IF* **is the secondary electron current including elastic and inelastic processes, measured on the Faraday cup** *IS* **is the currents on the sample**

Analysis chamber with

- XPS,
- Flood e-gun,
- Sample heater,
- Ar ion beam.

Science & Technology
Facilities Council First results on SEY of Cu **as a function of incident electron energy**

Original data June 2014 Applied Physics Letters 12/2014; 105(23): 231605

δmax as a function of electron dose for Al, 306L SS and Cu

Reduction of δ_{max} after conditioning is attributed to change in surface chemistry due to electron-beam induced transformation of CuO to sub-stoichiometric oxide, and build-up of a thin graphite C‐C bonding layer on the surface.

Scien Facili

26 Feb 2015 A&T seminar, CERN 16

More laser treated surfaces

- Surfaces treated in air or Ar
- **Studied**
	- − As received (after 12-hour pumping)
	- − After 2-hour bakeout to 250ºC

The latest results: Cu

Cu Laser Engineered Surface in Air

XPS analysis of Cu sample before and after heating

26 Feb 2015 **A&T** seminar,

XPS results of surface composition

The latest results: 304L

Stainless Steel Laser Engineered Surface in Air

.

Modelling an effect of surface geometry

- A 3D modelling of the structure was made by Dr. J. Smith with use of Vsim code
- The code allows modelling of:
	- **Electron generated with initial** energy E_0 and angle: $0 < \alpha_0 \leq 90^\circ$,
	- Electric field dE/dz (or bias U),
	- Bombarded surface:
		- flat or structured.
- Generating of secondary electron energy and spatial distribution based on the Furman-Pivi model $(SLAC-PUB-9912)$
26 Feb 2015 A&T seminar, CERN 24
- Electron generation: E_0 , α_0
- Bias U
- Collection of electrons

- Bombarded surface,
- $U=0$.
- Secondary electrons

Vsim is being used in 3D to predict geometric factors

- Flat surface was compared to
- Pyramidal structure with high-to-base ratio **a/b= 1**
- for $\alpha_0 = 90^\circ$ and $\alpha_0 = 45^\circ$

- Movie 1
-

Science & Technology **Simulations: normal incident**

Science & Technology
Facilities Council

Simulations: $\alpha_0 = 45^\circ$

Preliminary SEY Calculations using VSim - α = 45°, Furman-Pivi for Copper 3.0 2.5 ٥ – - ဓ SIMULATIONS EMPOWERING **OUR INNO** ERING VATIONS 2.0 \odot U = 50 V, Flat $-U = 150 V, Flat$ $\frac{2}{5}$ 1.5 $-\rightarrow -U = 50 V, Pvr$ \boldsymbol{a} $U = 150 V, Pyr$ S _{4,9} ↔ ∘ 0.5

700

600

Π

Modelling: Effect of initial angle α_0

- 9 samples were tested:
	- Cu blank gaskets \emptyset 48 mm
		- Untreated (2 samples)
		- LESS-A type treated in air or Ar atmosphere
		- LESS-C type treated in air atmosphere

ESD: H² and CH⁴

yield [molecules/electron]

ESD: CO and CO₂

26 Feb 2015 A&T seminar, CERN 31

Electron Stimulated Desorption (ESD)

- Main results:
	- LESS-A50, LESS-A80 and LESS-C demonstrated lower ESD yields than untreated sample
	- LESS-A50 treated in air is the best results
	- LESS-A60 demonstrated the highest ESD between studied samples, but are quite comparable with an untreated sample.

Surface resistance measurements

- Test cavities (3.9 and 7.8 GHz):
	- The simulation results obtained with Microwave Studio
	- Fabricated from Al.
- Samples:
	- a 100-mm diam. disk
	- Bulk Cu
	- 5-um thick deposited Cu on Si wafer
	- LESS-A on copper
	- LESS-C on copper

Surface resistance measurements at 7.8 GHz

What else do we need to know about LESS?

- SEY as a function of initial angle α_0
- SEY in a weak magnetic field B < 0.02 T
	- requires a modification of an existing SEY measurement
- SEY at cryogenic temperatures
- SEY in a strong magnetic field B = 1 T
	- can be done, requires a new testing facility
- Photo-electron emission yield (PEY)
	- PEY in a magnetic field
		- requires an access to a SR beamline

Summary: LESS properties Science & T

- **SEY**:
	- LESS on a metal surface is a very viable solution for reducing the δ < 0.6.
	- Even the initial (unconditioned) δ = 0.93 for SS is low enough to suppress ecloud in, e.g., the SPS, LHC, HL-LHC, ILC or FCC, etc.
	- SEY is reduced by a combination of two effects
		- Initial SEY due to the geometrical effect (confirmed by measurements and modelling)
		- Then by the surface chemistry change during a bakeout and/or bombardment with electrons, ions and (very likely) photons

• **Stimulated gas desorption**

- ESD yields are lower than for untreated copper
	- LESS-A50 treated in air shows the best results (lowest ESD yields)
- Laser treatment in air lead to lower ESD yields and in Ar
- LESS-A60 with the highest ESD is comparable with an untreated sample.
- **Surface resistance** with LESS can increase
	- measured values of surface resistance at 3.9 and 7.8 GHz shows that LESS-C type is a preferable solution to minimise an effect on the surface impedance in accelerator beam pipe.

Summary: LESS technology

- The technique can easily be applied to existing vacuum surfaces where the improvement has to be done *in-situ* with minimum disturbance to the beam line.
- The blackening process is carried out in air at atmospheric pressure; therefore the actual cost of the mitigation is considerably lower, a fraction of the existing mitigation processes.
- The process is also readily scalable to large areas.
- The surface is highly reproducible and offers a very stable surface chemistry which can be influenced during the process. The surface is robust and is immune to any surface delamination which can be a detrimental problem for thin film coating

The main conclusion

- LESS-C can be a key for the e-cloud suppression in high energy particle accelerators:
	- $\cdot \quad \delta$ < 0.6
	- No outgassing problems
	- Insignificant increase in impedance
	- Easy implementation
	- Robust
	- Highly reproducible
	- **Inexpensive**
	- In-situ

Acknowledgments

- Sihui Wang (PhD student)
- Dr. Philippe Goudket (RF ASTeC)
- Dr. Graeme Burt (RF Lancaster University)
- Lewis Gurran (RF ASTeC)
- Dr. Jonnathan Smith (Tech-X Corporation, UK)

• **STFC for a grant for PoC work which allowed us to optimise the LESS properties**