

Parameters and tolerances for aperture margin evaluation at injection

R. Bruce, M. Giovannozzi, V. Kain, S. Redaelli, R. Tomas, F. Velotti, J. Wenninger

Acknowledgement: P. Baudrenghien, R. de Maria, M. Fiascaris

- Introduction
- Updated tolerances
- Updated criterion for allowed aperture
- Summary

Introduction

- Available aperture in experimental insertions defines reach in β^*
- Aperture calculations traditionally carried out with n1 model, including different tolerances
- Aperture measurements and beam measurements (orbit, optics,...) in running machine allows to refine tolerances
 - Done last year for collision (CERN-ACC-2014-0044)

Injection calculation

- Injection aperture also to be evaluated for LHC and HL-LHC
- Applications:
 - Global aperture: Calculation to be used to determine whether an optics (globally) gives enough aperture margin
 - Injection at smaller β^* : Updated aperture calculations to be used to determine triplet aperture and β^* for injection similar calculation as in collision
- To update calculation parameters, need
 - Updated error tolerances
 - Updated criterion of allowed aperture

Previous parameters

 During design, used same parameters at injection and collision except closed orbit and momentum offset

Parameter	Unit	Design value @ injection	Design value @ collision
Primary halo	σ	6.0	6.0
Sec. halo, H/V	σ	7.3	7.3
Sec. halo, R	σ	8.4	8.4
Normalized emittance	μm	3.75	3.75
Closed orbit	mm	4.0	3.0
Momentum offset	-	1.5e-3	8.6e-4
β-beat (beam size)	-	1.1	1.1
Parasitic dispersion	-	0.27	0.27

• Criterion: n1≥7

R. Bruce, 2015.03.03

- Introduction: need for update of parameters
- Updated tolerances
- Updated criterion for allowed aperture
- Summary

Updated error tolerances

- Discussions with various experts based on Run 1 experience and expectations for HL-LHC
- Concerned parameters:
 - Halo shape
 - Emittance : only overall scaling factor as long as other constraints (impedance, machine protection margins) limit the collimator settings
 - Optics (β-beat, parasitic dispersion)
 - Orbit
 - Momentum offset

Halo and emittance

- Old halo definition: Very rough assumption of secondary halo without tail, not accounting for tertiary halo - not adequate for the modeling of the real cleaning bottlenecks in the DS
- Proposal: use round halo={6,6,6} so that the calculation gives the aperture and not n1
 - As done for collision
- Emittance: overall scaling factor in aperture calculation. Either
 - keep present design emittance of 3.5 μm => Easy comparison with present machine (done so far for HL-LHC collimation), or
 - Use the HL-LHC design emittance of 2.5 μm => Consistency within HL-LHC (all collimator settings in sigma would then need to be rescaled)

- Philosophy to base parameters for future machines on what has been achieved so far in the LHC. Include any expected worsening on top
- Run 1: achieved about 10% beta-beat and 14% spurious dispersion at injection.
 - Reduced to half of the design parameters!
- Similar philosophy used at collision: better beta-beat than nominal achieved, but correction expected to be worse for HL due to high β-functions in the arcs
 - Kept design parameter of 20%
- Proposal: 10% beta-beat (bbeat=1.05) and 14% spurious dispersion

- So far used 4 mm closed orbit tolerance
- Could be decreased to 2 mm, but need to add 1.75 mm for injection oscillations
 - Closed orbit tolerance could be decreased to 1 mm but at the expense of availability (need of immediate corrector repair if not all available)
 - transfer line re-steering needed above 1.75 mm
- Proposal: Keep 4 mm orbit tolerance

- Dp at collision decreased from 8.6e-4 to 2e-4 : no chromaticity measurements with full beam
 - Using 3 twiss evaluations for $+\delta$, $-\delta$, 0 and taking the minimum
- For injection (previously: dp was set to 1.5e-3):
 - Also no chromaticity measurements do not need full bucket height
 - − Take 1 σ momentum spread ≈ 4e-4
 - Add 2e-4 for energy oscillations
- Proposal: Decrease dp/p to 6e-4

Summary of parameters

Parameter	Unit	New value @ injection
Primary halo	σ	6.0
Sec. halo, H/V	σ	6.0
Sec. halo, R	σ	6.0
Normalized emittance	μm	3.5 (2.5?)
Closed orbit	mm	4.0
Momentum offset	-	6e-4
β-beat (beam size)	-	1.05
Parasitic dispersion	-	0.14

Example comparison of obtained apertures

• Example: 500m of the arc

- Introduction: need for update of parameters
- Updated tolerances
- Updated criterion for allowed aperture
- Summary

Estimating allowed aperture

- Aperture must be protected by collimation system during all relevant loss scenarios
- In the past, considered only halo cleaning in n1 model
- At top energy, potential damage during asynchronous dumps was driving the allowed aperture
- At injection: evaluate minimum allowed aperture for different loss scenarios, and take the maximum
 - Asynchronous beam dumps
 - Injection failure (talk F. Velotti)
 - Halo cleaning

- Single-module pre-fire simulated with SixTrack at injection with full collimation system in place
- 25 ns bunch structure, each bunch in train simulated
- Assuming 3.5 um emittance, 7 TeV: worse case than 2.5 um
- Standard nominal collimator settings for injection
- Studying several different cases: HL-LHC B1 &B2, nominal LHC, using a perfect Gaussian and measured tails, error on TCDQ retraction
- Example illustration on next slide
 - bunch-by-bunch distribution of normalized betatron amplitude of particles escaping dump protection in IR6 for HL B1 with perfect Gaussian

Quantifying allowed aperture

- Idea:
 - Study distribution of escaping betatron amplitudes out of IR6, summed over all bunches
 - Study as survival function: Integrate escaping population from $N \sigma$ to infinity. This is the maximum number of impacting protons that is possible at an aperture at level N
 - This is a pessimistic estimate most likely the losses will be distributed
 - Normalize to HL bunch population of 2.2e11 p/bunch
 - Compare with damage level used for setup beam flag
 - If integrated population is below, the aperture is allowed

Integrated population above given aperture cut

- Survival function equals setup beam flag at $\leq 6.5\sigma$ for all studied cases
- Differences between cases seen mainly in the tail

Adding errors

- Could thus allow ~6.5 σ aperture with perfect IR6. Should on top account for imperfections
- Orbit drifts at the dump protection=> TCSG/TCDQ could be at a larger effective setting than simulated:
 - Use 3.5 mm as worst case: it is the allowed excursion by the BPMS interlock. Translates to about 1.8 σ for all studies optics
- Account for additional errors:
 - 10% β -beat => 0.4 σ
 - Setup and positioning errors negligible at injection (<0.03 σ)
- Conclusion: accounting for imperfections, allowed aperture for asynch. dump goes to ~8.7 σ . Round to 9 σ => additional safety

Calculation principle to qualify aperture

- Calculate worst-case aperture from imperfections (locally) with updated parameters in MAD from previous slides
- Compare with max amplitude of dangerous beam escaping IR6, including local imperfections there to say if OK or not

Comparison: old n1 vs new aperture calculation

• Comparing ratio of obtained aperture (or n1) to the criterion

- Pessimistic estimate : Look at outgoing halo population downstream of IR7 simulated with SixTrack without aperture
 - Sum halo over 200 turns: Assuming a constant loss rate, this is the convolution of the losses from previous turns. Gives the instantaneous halo population at any given moment. Assume this can be lost per turn – very pessimistic!
 - Re-normalize to loss rate during lifetime drop to 12 minutes (collimation design criterion)
- Integrate halo population from any given aperture cut X to infinity: an aperture at X σ cannot intercept a higher loss rate
 - In reality, losses are distributed: not all lost on one bottleneck
 - Compare with pessimistic design quench limit real quench limit is higher!

Survival function for cleaning

- Similar to cleaning inefficiency curves studied in the past
- IR7 secondary collimators give limit around 6.7 σ

Cleaning constraints

- Extremely pessimistic assumptions: losing on every turn the whole integrated instantaneous halo at given bottleneck
- Not straightforward to include imperfections
 - almost impossible that all TCSGs are simultaneously misaligned
 - Could nevertheless increase a bit the halo population by order of factor ~2 (peak DS losses in previous SixTrack studies with imperfections)
- However, very steep curve => almost impossible that limit goes as high as 9 σ
 - Cleaning is less critical than asynch. dumps
- In the future: look at 2D halo distribution in betatron amplitude and energy offset
- Similar studies ongoing for FCC (M. Fiascaris)

Summary

- New tolerances for aperture calculations at injection estimated based on Run 1 experience and expectations for the future
- Criterion for allowed aperture: studying several loss scenarios, and taking the most critical one
 - Asynch. dumps more critical than cleaning: allowed aperture of 9 σ
 - Still to be compared with injection failure: see talk F. Velotti
 - As for the case of the top-energy triplet aperture, the allowed value depends on the collimator settings
- The presented criterion is valid for all apertures in the ring but pessimistic.
 - If the injection aperture limits performance, could consider local collimation studies to qualify smaller apertures at specific locations (as done for triplets with squeezed optics)

Summary of parameters

Parameter	Unit	Design value @ injection	Design value @ collision	New value @ injection	New value @ collision
Primary halo	σ	6.0	6.0	6.0	6.0
Sec. halo, H/V	σ	7.3	7.3	6.0	6.0
Sec. halo, R	σ	8.4	8.4	6.0	6.0
Normalized emittance	μm	3.75	3.75	3.5 (2.5?)	3.5 (2.5?)
Closed orbit	mm	4.0	3.0	4.0	2.0
Momentum offset	-	1.5e-3	8.6e-4	6e-4	2e-4
β-beat (beam size)	-	1.1	1.1	1.05	1.1
Parasitic dispersion	-	0.27	0.27	0.14	0.1

Criterion: obtained aperture should be > 9 σ (possibly to be updated based on requirements for injection failure)

R. Bruce, 2015.03.03

— A (no tol.)/11.5