Minimum required machine aperture for injection failures

F.M. Velotti, W. Bartmann, C. Bracco, R. Bruce, B. Goddard, M. Meddahi, J. Uythoven...and all LIBD WG

Thanks to: R. De Maria, M. Giovannozzi

Outline

- Introduction
 - LHC injection protection system
 - TDI post LS2 (TDI-s)
 - Optics used for simulations
- Simulation results
 - MKI and TDI failure cases
 - Survival function after LHC injection protection system
- Conclusions

Outline

- Introduction
 - LHC injection protection system
 - TDI post LS2 (TDI-s)
 - Optics used for simulations
- Simulation results
 - MKI and TDI failure cases
 - Survival function after LHC injection protection system
- Conclusions

LHC Injection System

- The injection system is composed by:
 - Horizontal septum MSI
 - Quadrupole Q5
 - Vertical kicker MKI
 - Protection devices TDI, TCLIA/B, TCDD

LHC Injection System

LHC Injection System

• 2 vertical jaws

TCLIM

- Nominal aperture: 6.8 σ
- Protection against MKI failures

- 2 vertical jaws
- Nominal aperture: 6.8/8.3 σ
- Protection against phase errors between MKI and TDI

New TDI-S

- For HL-LHC the TDI will be redesigned
- The most likely design foresees:
 - 3 separate blocks: 2 of graphite (R4550) and 1 of high Z materials
- For the following simulations, the last TDI-S block has been considered only Aluminum
- The last block has 2 mm larger aperture than the upstream one

HL-LHC Optics

- The optics used for the simulations is HL-LHC V1.1
- It very very similar to the current one
 - The main differences are in crossing and separation bumps

Outline

- Introduction
 - LHC injection protection system
 - TDI post LS2 (TDI-s)
 - Optics used for simulations
- Simulation results
 - MKI and TDI failure cases
 - Survival function after LHC injection protection system
- Conclusions

Injection failures - simulation

- The MKI deflects vertically the injected beam to bring it onto the nominal trajectory
- Nominal deflection assumed: $\theta = 0.85$ mrad
- Kicker failures can concern both injected or circulating beam:
 - For the injected beam, the MKI strength considered is between 0 and 125% (100% nominal)
 - For the circulating beam, the MKI strength considered is between 0 (nominal) and 100%
 - <u>Above 100% (for the circulating beam) becomes double-failure</u> -> combination of two different failure modes which are excluded
- Above +/- ~20% of the MKI strength, the whole beam (> 5 σ) is lost on the TDI

Injection failures - simulation

- Studies are done considering:
 - TDI aperture 6.8 σ (ϵ_{nom})
 - TCLIA/B aperture 6.8 σ (ϵ_{nom})
 - Grazing impact on the TDI at nominal position
 - = ~11% of nominal kick for B1
 - = ~9.5% of nominal kick for B2

B1 Simulation results

- Highlight on two cases using ideal machine:
 - 1.MKI kick of 11% its nominal with protection devices at nominal settings
 - 2.MKI kick of 11% its nominal, TDI at 7.8 σ and TCLIA/B at 6.8 σ

B1 Simulation results

- Highlight on two cases using ideal machine:
 - 1.MKI kick of 11% its nominal with protection devices at nominal settings
 - 2.MKI kick of 11% its nominal, TDI at 7.8 σ and TCLIA/B at 6.8 σ

B2 Simulation results

- Highlight on two cases using ideal machine:
 - 1.MKI kick of 9.5% its nominal with protection devices at nominal settings
 - 2.MKI kick of 9.5% its nominal, TDI at 7.8 σ and TCLIA/B at 6.8 σ

B2 Simulation results

- Highlight on two cases using ideal machine:
 - 1.MKI kick of 9.5% its nominal with protection devices at nominal settings
 - 2.MKI kick of 9.5% its nominal, TDI at 7.8 σ and TCLIA/B at 6.8 σ

Surviving Function

- Integrating the escaping proton distribution (2e5 macro particles used => normalising to 2.2e11 p/bunch) (R. Bruce)
- Max amplitude escaping the injection protection system above 5e11 p is 7.2o

Minimum required aperture

- Summing to the previous result the tolerances in table:
 - + 1 σ at the TDI already included in the simulation
 - CO and injection oscillations to be considered together
- Assumptions: $1\sigma = 1$ mm, $\delta_p = 1.5e-3$, $k_d = 0.27$, $k_\beta = 1.2$

Tolerances [1]	TDI (V)	\mid TCDI (V) *	TCDI (H)*
Max A (with err)	7.2	6.8	6.8
Orbit	1.5	1.5	1.5
Injection osc	1.5	1.5	1.5
Beta beat	0.5	0.5	0.5
Energy err	0.1	0.1	1
Total	10.8	10.4	11.3

[1] ANGULAR ALIGNMENT OF THE LHC INJECTION PROTECTION STOPPER, C. Bracco et al., IPAC12

* TCDIs at nominal 4.5s

Outline

- Introduction
 - LHC injection protection system
 - TDI post LS2 (TDI-s)
 - Optics used for simulations
- Simulation results
 - MKI and TDI failure cases
 - Survival function after LHC injection protection system
- Conclusions

Conclusions

- MKI injection failures have been analysed and simulated
- B2 represents the worst case in terms of intensity of high-amplitude escaping particles
- The injection protection system in the LHC is only on the vertical plane - horizontally only protected by TCDIs in the TLs => minimum allowed hor aperture is 11.5σ
- The minimum vertical amplitude protected by the injection protection system, considering injection failures, in HL-LHC is <u>11σ</u>

Thank you!

Backup

pycollimate - SixTrack extended for collimation

