Progress on electron cloud studies for HL-LHC

A. Axford, G. Iadarola, A. Romano, G. Rumolo

Acknowledgments: R. de Maria, R. Tomás HL-LHC WP2 Task Leader Meeting, 24 April 2015

<u>Outline</u>

- Electron-cloud driven instabilities in LHC
 - PyHEADTAIL-PyECLOUD development
 - Benchmark against HEADTAIL
 - Application to LHC and HL-LHC for arc dipoles and quadrupoles at 450 GeV
- Electron cloud build-up with/without beam screen baffles
 - Angular heat load distribution on the triplet beam screen
 - PyECLOUD development for the simulation of non-convex structures

PyHEADTAIL-PyECLOUD development

- PyECLOUD module plugged into PyHEADTAIL to simulate the interaction of a bunch with an electron cloud
- The two tools can share most of the work of development and maintenance
 - All advanced e-cloud modeling features implemented in PyECLOUD (arbitrary chamber shape, secondary electron emission, arbitrary magnetic field map, Boris electron tracker, accurate modeling for curved boundary) become naturally available for PyHEADTAIL.
- This enables several new simulation scenarios. In particular:
 - All scenarios where the electron wall interaction cannot be neglected, e.g. with trailing edge multipacting (PS long bunches), doublet beams
 - Quadrupoles (including triplets, but this requires further development)
 - Other magnetic field configurations, e.g. combined function magnets, multipoles, arbitrary field maps

Benchmark against HEADTAIL

 PyHEADTAIL-PyECLOUD extensively benchmarked against HEADTAIL for SPS injection cases (simplified case of no chamber)

SPS @26 GeV/c, Q20 optics

Parameter	Value
N (p/b)	1.15 x 10 ¹¹
ε _{ξ,y} (μm)	2.5
σ _z (m)	0.2
B (T)	0.5
N _{el} (e⁻/m³)	10 ¹¹
N _{kicks}	5
N _{MP} (e⁻)	10 ⁵
N _{MP} (p)	3 x 10 ⁵
N_{slices} (-3 σ_z , 3 σ_z)	64

Benchmark against HEADTAIL

LHC and HL-LHC cases

- PyHEADTAIL-PyECLOUD applied to study instability thresholds for electron cloud density in arc dipoles and quadrupoles, with
 - Realistic chamber
 - Initial uniform electron distribution

1 HC @ 450 GeV//c

Parameter	Value
N (p/b)	1.3 – 2.3 x 10 ¹¹
ε _{ξ,y} (μm)	2.5
σ_{z} (m)	0.1
B (T, T/m)	0.53, 12
N _{el} (e⁻/m³)	0.3 – 20 x 10 ¹²
N _{kicks}	79
N _{MP} (e ⁻)	10 ⁵
N _{MP} (p)	3 x 10 ⁵
N_{slices} (- $2\sigma_z$, $2\sigma_z$)	64

Electron cloud in the arc dipoles (I)

- Nominal intensity 1.3 x 10¹¹ p/b
- $_{\odot}$ The electron cloud density is scanned between 0.5 and 1.5 x 10¹² e⁻/m³
- The instability happens in the vertical plane, as the dipole magnetic field freezes the electron motion in the vertical plane (note that, unlike HEADTAIL, now a correct tracker in the magnetic field, is used)

Electron cloud in the arc dipoles (II)

- HL-LHC intensity 2.3 x 10¹¹ p/b
- $_{\odot}$ The electron cloud density is scanned between 0.5 and 1.5 x 10¹² e⁻/m³
- The instability happens in the vertical plane, as the dipole magnetic field freezes the electron motion in the vertical plane (note that, unlike HEADTAIL, now a correct tracker in the magnetic field, is used)

Electron cloud in the arc quadrupoles (I)

- Nominal intensity 1.3 x 10¹¹ p/b
- The electron cloud density is scanned between 4.0 and 20 x 10¹² e⁻/m³ **
- The instability appears equally in the horizontal and vertical planes, the magnetic field lines do not cause an important asymmetry → Horizontal

** About 10x higher than dipoles, because effect integrated over a ~15x shorter length

 $N_{el}^{(thr)} = 9.0 \text{ x } 10^{12} \text{ e}^{-/\text{m}^3}$

Electron cloud in the arc quadrupoles (II)

- Nominal intensity 1.3 x 10¹¹ p/b
- $_{\odot}$ The electron cloud density is scanned between 4.0 and 20 x 10^{12} e^{-/m^{3}}
- The instability appears equally in the horizontal and vertical planes, the magnetic field lines do not cause an important asymmetry → Vertical

 $N_{el}^{(thr)} = 9.0 \times 10^{12} \text{ e}^{-/\text{m}^3}$

Electron cloud in the arc quadrupoles (III)

- HL-LHC intensity 2.3 x 10¹¹ p/b
- $_{\odot}$ The electron cloud density is scanned between 4.0 and 20 x 10^{12} e^{-/m^{3}}
- The instability appears equally in the horizontal and vertical planes, the magnetic field lines do not cause an important asymmetry → Horizontal

Electron cloud in the arc quadrupoles (IV)

- HL-LHC intensity 2.3 x 10¹¹ p/b
- $_{\odot}$ The electron cloud density is scanned between 4.0 and 20 x 10^{12} e^{-/m^{3}}
- The instability appears equally in the horizontal and vertical planes, the magnetic field lines do not cause an important asymmetry → Vertical

 $N_{el}^{(thr)} = 9.0 \text{ x } 10^{12} \text{ e}^{-/\text{m}^3}$

Comparison with build up (I)

- Nominal intensity 1.3 x 10¹¹ p/b
- Build up simulations to find to which SEY the threshold densities are associated

For stability: SEY<~1.6 in both dipoles and quadrupoles

Comparison with build up (II)

- HL-LHC intensity 2.3 x 10¹¹ p/b
- Build up simulations to find to which SEY the threshold densities are associated

For stability: **SEY<~1.6** in dipoles E-cloud in quadrupoles seems insufficient to trigger instabilities

Incoherent Effects & Tune Footprints

- The incoherent effects of the electron cloud can be studied with special PyHEADTAIL simulations conceived for simulating a large number of turns (similarly to a frozen space-charge model)
 - The electric potential associated to the electron cloud pinch is calculated only at the beginning of the simulation and then it is stored
 - The corresponding forces are calculated at the bunch particles positions and applied to the particles turn after turn
 - In presence of emittance growth, the pinch needs to be refreshed after a certain number of turns to guarantee a certain self-consistency
- For the evaluation of the tune footprint, the longitudinal motion is also frozen

Incoherent effects Tune footprints in dipoles (I)

- Nominal intensity 1.3 x 10¹¹ p/b
- Calculate electron cloud footprints for different SEYs → above instability threshold

Color coding for footprint: longitudinal position along bunch Asymmetric footprint, in H, slight defocusing effect due to the pinched stripes

Incoherent effects Tune footprints in dipoles (II)

- Nominal intensity 1.3 x 10¹¹ p/b
- Calculate electron cloud footprints for different SEYs → just below instability threshold

Color coding for footprint: longitudinal position along bunch Asymmetric footprint, in H, slight defocusing effect due to the pinched stripes

Incoherent effects Tune footprints in quadrupoles (I)

- Nominal intensity 1.3 x 10¹¹ p/b
- Calculate electron cloud footprints for different SEYs → above instability threshold

Incoherent effects Tune footprints in quadrupoles (II)

- Nominal intensity 1.3 x 10¹¹ p/b
- Calculate electron cloud footprints for different SEYs → below instability threshold

Incoherent effects Tune footprints in quadrupoles (III)

- Nominal intensity 1.3 x 10¹¹ p/b
- Calculate electron cloud footprints for different SEYs \rightarrow far below instability threshold, lower limit estimated from SAM measurements in 2012 (1.1 1.2)

Incoherent effects Tune footprints in dipoles (I)

- HL-LHC intensity 2.3 x 10¹¹ p/b
- Calculate electron cloud footprints for different SEYs → at the instability threshold

Color coding for footprint: longitudinal position along bunch Asymmetric footprint, in H, slight defocusing effect due to the pinched stripes

Incoherent effects Tune footprints in dipoles (II)

- HL-LHC intensity 2.3 x 10¹¹ p/b
- Calculate electron cloud footprints for different SEYs → below the instability threshold

Color coding for footprint: longitudinal position along bunch Asymmetric footprint, in H, slight defocusing effect due to the pinched stripes

Incoherent effects Tune footprints in quadrupoles (I)

- HL-LHC intensity 2.3 x 10¹¹ p/b
- Calculate electron cloud footprints for different SEYs → below the instability threshold

Incoherent effects Tune footprints in quadrupoles (II)

- HL-LHC intensity 2.3 x 10¹¹ p/b
- Calculate electron cloud footprints for different SEYs → far below the instability threshold

Color coding for footprint: longitudinal position along bunch Symmetric, head and tail not much detuned, maximum detuning when pinching

24

Incoherent effects Tune footprints in quadrupoles (III)

- HL-LHC intensity 2.3 x 10¹¹ p/b
- Calculate electron cloud footprints for different SEYs \rightarrow far below the instability threshold, into the region of SEY estimated in 2012

Incoherent effects

Tune footprints in quadrupoles: effect of distribution (I)

- Nominal intensity 1.2 x 10¹¹ p/b
- SEY = 1.2, build up simulation \rightarrow use electron distribution at saturation just before bunch passage

Incoherent effects

Tune footprints in quadrupoles: effect of distribution (II)

- Nominal intensity 1.2 x 10¹¹ p/b
- SEY = 1.2, build up simulation \rightarrow use electron distribution at saturation just before bunch passage

Footprint with self-consistent distribution is significantly smaller ...

Part I: Conclusions & Outlook

• Electron-cloud driven instabilities in LHC

- PyHEADTAIL-PyECLOUD module fully functional
- Effect of electron cloud in arc dipoles and quadrupoles on single bunch stability studied for nominal and HL-LHC parameters
 - SEY should be below instability threshold for present beam parameters (but need to study combined effect)
 - Electron cloud in quads alone seems to be insufficient to trigger electron cloud instabilities for HL-LHC parameters
- Tune footprints generated for e-cloud in dipoles and quadrupoles → important to include self-consistent distribution from PyECLOUD
- \rightarrow Next on the list:
 - Full blown simulations with self-consistent distributions, combined effects
 - Effect of triplets ('almost 3D' simulation → needs slicing with beta function variation, self-consistent distributions with enough macroelectrons in the center for each slice, weak-strong two-bunch pinch in LR points, off-axis beam with changing orbit, ...)

EC much weaker in the vicinity of long range encounters

Modules with the same beam screen and field structure behave very similarly

Electron cloud in the HL-LHC triplets

- First check: are the holes located at high impact positions?
- → Need to determine azimuthal dependence of heat load and electron flux

Electron cloud in the HL-LHC triplets

 \circ Scan in the longitudinal direction \rightarrow mainly high impact regions

Electron cloud in the HL-LHC triplets

- Fix SEY_{screen}=1.05 (a-C coating)
- Scan SEY of holes from 0 (perfect absorbers) to 2.05 (uncoated and unscrubbed baffles)

Electron cloud in the HL-LHC triplets: next steps

- Implementation in PyECLOUD of non-convex boundaries for chamber geometries → Done The code now correctly manages:
 - Detection of in or out of the chamber particle positions
 - Impact of particles against the chamber wall
 - Poisson equation to determine electric potential and electric field across the chamber

Electron cloud in the HL-LHC triplets: next steps

- Implementation in PyECLOUD of non-convex boundaries for chamber geometries → Done The code now correctly manages:
 - Detection of in or out of the chamber particle positions
 - Impact of particles against the chamber wall
 - Poisson equation to determine electric potential and electric field across the chamber
- After this development, more complicated geometries can be implemented to model screen with holes, cold bore and possible shielding behind the holes
 - It will be first applied to the LHC beam screen in the arc dipoles and check multipacting conditions with and without baffle plates
 - It will be then extended to the triplets and other cases of interest

Thanks for your attention

HL-LHC meeting, 24 April 2015 36

Electron cloud in the quadrupoles: heat load as a function of bunch intensity for different SEY's (simulations with Boris' tracker)

