UK Technical R&D for Future CMB Experiments

Matt Griffin

Cardiff University

European CMB Coordination Meeting

Florence

Main UK Institutes and Capabilities

Institutes

- University of Cambridge
- Cardiff University
- Imperial College London
- University of Manchester
- University of Oxford
- RAL-Space (Rutherford Appleton Laboratory)

Interests/Capabilities/Experience

- Detectors (TES, KID)
- Quasi-optics
- Mechanical coolers
- Earth-based and space-borne experiments
- Calibration/systematics/foregrounds
- Data processing

TES Detector Development

European CMB Coordination Meeting

Florence

- Feedhorn-coupled TES arrays
- Objectives
 - 1. Explore fabrication of ultra-low NEP arrays for future space instruments
 - 2. Raise the TRL of arrays integrated with horn antennas
- Directed initially at developing focal plane technology for SPICA-SAFARI
- Cambridge: TES array manufacture and testing
- Cardiff : Filters and feedhorn manufacture and optical testing

Ultra-Low Noise TES Measurements

Absorber coupled TESs with full and patterned absorbers for 160 μm

• High TES absorption efficiency

Horn and Filter Performance

Angle (degrees)

Ultra-Low Noise TES Arrays

Absorber-coupled TES Array with micro-machined back-shorts

384 element array NEP ~ 4×10^{-19} W/ $\sqrt{\text{Hz}}$ T_c =120 mK

Ballistic phonon isolated TESs

- 0.5-µm wide SiN support legs
- Only low-order phonon modes contribute to transport
- $T_c = 100 500 \text{ mK}$
- NEP ~ 1 x 10⁻¹⁸ W Hz^{-1/2}
- Very close-packed arrays
- Suitable for space-borne or ground-based CMB polarimetry

European CMB Coordination Meeting

Florence

Probe-Coupled TES for CMB Polarimetry

Four-probe design with microstrip transition for circular waveguide

European CMB Coordination Meeting

Florence

Kinetic Inductance Detector Development

European CMB Coordination Meeting

Florence

SPACEKIDS

- UK, Netherlands, France, Spain
- Three-year EU FP-7 programme (ends Dec. 2015)
- Develop KID technology for space applications
 - Astronomy
 - Earth observing
- KID sensors and arrays
- Optical coupling methods
- Readout electronics
- Two lab demonstration systems in representative regimes
 - Low background (astronomy)
 - High background (Earth observation)
 - Instrument concept studies (Astrophysics/CMB/EO)

European CMB Coordination Meeting

Florence

Key Objectives

- 1. Photon noise limited sensitivity
- 2. Broadband optical coupling with high efficiency
- Low cosmic ray susceptibility → small data loss due to glitches
- 4. Low microwave crosstalk between readout channels allowing high pixel count

Key Requirements for Demonstrator Systems

	Low background	High background
P _{Background}	5 fW	2 pW
NEP	< 5 x 10 ⁻¹⁹ W Hz ^{-1/2}	< 4 x 10 ⁻¹⁷ W Hz ^{-1/2}
Time const.	1 ms	15 ms
Array size	> 500	> 500
Crosstalk	< 20 dB	< 20 dB
CR data loss	< 10%	< 10%

European CMB Coordination Meeting

space**KIDS Broadband Response: Absorber-Coupling Kinetic Inductance**

European CMB Coordination Meeting

Detectors for Space

Florence

1 Sept. 2015

AimValley

Florence

Cosmic Ray Rejection

- Number of tones: up to 2200
- Band: 2-4 or 4-8 GHz
- Further work at SRON to develop a space-worthy version

- AMKID-type 350 GHz array
 - ~ 800 pixels

space **KIDS**

Kinetic Inductance Detectors for Space

- NbTiN / AI hybrid MKIDs
- Dual-polarisation LEKID 350 GHz array

European CMB Coordination Meeting

Florence

Low Background Test Programme

- 1000-pixel 850-GHz Array
 - Twin-slot antenna-coupled
 - NbTiN/Al hybrid MKIDs
- ~800-pixel 1.6 THz Array (broadband leaky wave lens antenna-coupled)

- Photon noise limited performance under loads typical of a CMB experiment
- Spectral band can be tuned to by adjusting wafer thickness and back-short distance
- Possible to optimize for a single polarization

Mauskopf, et al, 2014,

KID Development at Cambridge

- CAMELS (Cambridge EMission Line Surveyor)
 - Collaboration with Harvard CfA
 - Pathfinder instrument for on-chip spectrometry
 - 103-115 GHz range with R ~ 1000
- KIDs fabricated and tested at Cambridge

KID Development at Cambridge

- Simulation and theory
 - Simulations of non-equilibrium quasiparticle distribution and dynamical behaviour of resonators in presence of readout- and optical-forcing
 - Large and small-signal electro-thermal models of KIDs, including noise and feedback mechanisms

Model calculated using Cambridge non-equilibrium code.

European CMB Coordination Meeting

Florence

1 Sept. 2015

UNIVERSITY OF

CAMBRI

KID Development at Cambridge

Low-frequency operation

- Investigating materials for 70-110 GHz operation
- Devices with β-Ta sensing sections fabricated and in testing
- Thermal KIDs (TKIDs)
 - Theory and simulation effort

Filterbank spectrometers

UNIVERSITY OF

- On-chip filter-bank with high R for CAMELS.
- Multiple low-R channels could be useful for foreground removal

European CMB Coordination Meeting

Multiband Horn-Coupled Polarimetry

- Plan to demonstrate multi-band probe-coupled pixel with planar filters feeding LEKIDs in both polarizations and across a several photometric bands
- Study

UNIVERSITY OF

- Feedhorn vs lens coupling
- Band-defining filter architectures (distributed vs lumped element) coupled to LEKID absorbers
- Design, fabrication and characterization
 - Spectral response
 - End-to-end optical efficiency
 - NEP
 - Cross-polarization

Optical Modelling and Measurement

 Few-mode simulations of SPICA/SAFARI and optical test system, including photon noise and polarisation response.

Simulated response of highest-order modes on sky and at SPICA focal plane

• Experimental methods for optical characterisation of few-mode detectors

 Few-mode simulations of free-space coupled and waveguide-mounted absorbers

Stokes response of a waveguide mounted absorber.

Quasi-Optical Components

European CMB Coordination Meeting

Florence

Quasi-Optical Components

- Filters
- Polarisers
- Beam dividers
- Lenses
- Windows
- Waveplates
- AR Coatings
- Etc.

- Design, modelling, manufacturing and test facilities
- Including large (> 0.5-m) components

Dielectrically Embedded Mesh Half Wave Plates

Large-Bandwidth HWPs

- Mesh-based artificial dielectrics with specifically tuned refractive indices
- Large bandwidth (>160%) polypropylene-based ARC

European CMB Coordination Meeting

Florence

RF Components

32

- 4-8 GHz amplifiers (from Centro Astronómico de Yebes)
- T_{noise} ~ 3.5 K at 20 K operating temperature
- Flat across the band to 0.5 dB

European CMB Coordination Meeting

Participation in US Balloon Experiments

European CMB Coordination Meeting

Florence

BLASTPol and BLAST-TNG

BLASTPol and BLAST-TNG

EBEX and **EBEX10K**

- 11,000 detectors
- Lens-coupled sinuous antenna multichroic pixels
- 150, 220, 280, and 350 GHz

European CMB Coordination Meeting

Florence

- ~ 8,000 TES detectors (270, 350 GHz)
- ~5 000 KID detectors (600 GHz)
- 1.35-m telescope with 4 K secondary
- Long-duration (> 28 day) Antarctic flight
- 10,000 deg² overlapping ACT, BICEP2,
- CLASS, PolarBear and SPT
- Proposed first flight Dec. 2018

Mechanical Coolers

Planck 4-K Cooler

Low vibration

Temperature stability ~3.6 mK/year

Temperature evolution over the mission

Very low exported vibration from the cooler to the spacecraft

2-K Cooler Development

- Aimed at future cryogen-free science missions requiring cooling chain to < 100 mK
- Builds on *Planck* design, with improved mechanisms and low vibration systems
- Cold plumbing tested
- Manufacture of compressors underway
- To be used by ESA to demonstrate 50-mK cryogenics chain for use in missions such as Athena+, CoRE+

European CMB Coordination Meeting

Florence

Miniaturisation and Integration with Sub-K Coolers

- Looking at cooler miniaturisation using new motor mechanisms
- Also looking at additions of further stages to get down to 50-300 mK

RAL Space

SMALL SCALE COOLER PRODUCT SPECIFICATION			
Mass (excluding CDE)	650g		
Size Envelope (excluding DCE)	144 x 61 x 93mm		
Input power (750mW@77K, +20°C rejection)	25W		
Operating environment range	-30°C to +50°C		
Lifetime	>50 000hrs		

• Foregrounds key for accurate CMB measurements

MANCHESTER

The University of Manchester

- C-BASS has demonstrated that it's possible to do all-sky maps with high accuracy at low ℓ from the ground
- Oxford ERC-Advanced proposal for ground-based wide-field mapper for high-z CO and CMB foregrounds
 - 6-m compact range telescope
 - Receiver with 10-20 and 20-40 GHz feeds
 - Wideband (> 10 GHz inst.) digital spectrometer/polarimeter backed based on SKA technology

