CMB B-mode science

Anthony Challinor

KICC/IoA/DAMTP University of Cambridge

Planck ΔT

• Information in CMB ΔT close to exhausted with Planck

Linear polarization

Polarization power spectra

CMB polarization science

- Reionization
- Large-angle anomalies
- B-modes and gravitational waves
- Lensing reconstruction/delensing
- High-*l* E-modes:
 - Parameters from the damping tail
 - Primordial non-Gaussianity
- Cluster science:
 - Transverse velocities
 - Lensing-calibrated masses

Gravitational waves and inflation

- Strong evidence for inflation (flatness; adiabatic, almost Gaussian and scale-invariant primordial curvature perts)
- Also predicts quantum generation of primordial GWs

$$\mathcal{P}_{\rm t}(k) = \frac{d}{d\ln k} \langle h_{ij} h^{ij} \rangle = \frac{8}{M_{\rm Pl}^2} \left(\frac{H}{2\pi}\right)^2 \quad \text{Depends only} \text{ on energy scale}$$

- Very generic; detectable if $E_{inf} \sim 10^{16}$ GeV or greater
- Tensor-to-scalar ratio (relative importance of GWs)

$$r \equiv \mathcal{P}_{\rm t}/\mathcal{P}_{\rm s} = \frac{8}{M_{\rm Pl}^2} \frac{\dot{\varphi}^2}{H^2} = \frac{8}{M_{\rm Pl}^2} \left(\frac{d\varphi}{dN}\right)^2 \approx 8M_{\rm Pl}^2 \left(\frac{V'}{V}\right)^2$$

- Lyth (1997) bound: $\Delta \varphi / M_{\rm Pl} \geq \sqrt{r/8} \, \Delta N$

Gravitational waves in the CMB

• Confusion from curvature perts limits $\sigma(r) \approx 0.1$ from TT

Constraints on r and n_s from Planck

ESA/Planck 2015

Direct measurements of BB

Keisler+2015

BK 150 GHz and Planck 353 GHz

BICEP2/Keck + Planck Collaborations 2015

BK 150 GHz and Planck 353 GHz

BICEP2/Keck + Planck Collaborations 2015

• B-modes now as constraining as TT

Demonstrated power of multi-frequency dust cleaning

$T(\hat{n}) \ (\pm 350 \mu K)$

Duncan Hanson

$T(\hat{n}) \ (\pm 350 \mu K)$

$\mathbf{B}(\hat{n}) \ (\pm 2.5 \mu K)$

Duncan Hanson

Planck reconstruction noise levels

Almost white noise on $L(L+1)\varphi_{LM}$ on large scales

Planck 2015 minimum-variance

ESA/Planck 2015

Planck 2015 EE+BB

2015 MV power spectrum

ESA/Planck 2015

Future CMB lensing surveys

- S/N>1 possible for all linear modes
 - $\sigma(\Sigma m_v) \approx 30$ meV and rather better with X-corrs (LV's talk)
- Similar performance may be possible from ground (dust?):AdvACT, Stage-IV

Delensing degree-scale B-modes

- Large-angle lens-induced B-modes like 5 μ K-arcmin white noise (c.f. 3 μ K-arcmin in BICEP2/Keck before dust cleaning)
- Subtract lens-induced B-modes with estimate of ϕ : $B_{delens} \sim B E \phi$
 - Requires high-S/N E and ϕ (or proxy, e.g., CIB) on small scales

Towards delensing: indirect BB

• "Correction" in $B_{delens} \sim B - E\phi$ correlated with B at expected level

 C^{BB} $\sim B(E\hat{\phi})$

See also Hanson+2013, Ade+2014, and van Engelen+2014

Challenges

• Sensitivity:

$$\Delta_P = 1 \,\mu \mathrm{K} \operatorname{arcmin} \sqrt{\frac{10^5}{N_{\mathrm{d}}}} \left(\frac{s_{\mathrm{d}}}{100 \,\mu \mathrm{K} \sqrt{\mathrm{s}}}\right) \sqrt{\frac{1 \,\mathrm{yr}}{t_{\mathrm{obs}}}} \sqrt{f_{\mathrm{sky}}}$$

- Galactic foregrounds (see PL's talk)
 - Issue for GW detection everywhere at 150 GHz
 - Minimum at lower frequency but requires multi-component modeling and synchrotron is likely more complex
 - Issue for lensing science?
- Systematic effects (see PL's talk)
 - BICEP2/Keck demonstrated control to $r\sim O(0.01)$ level with template projection
 - Characterisation of $O(10^5)$ focal-plane elements?

