

# HV-CMOS active sensor design for CLICpix v2

**Ivan Peric** 

Ivan Peric, CLIC Detector and Physics Collaboration Meeting, June, 2015

1

#### **HVCMOS CCPD**





•

. . . .

#### Plans



- AMS H18 on high resistive substrate run ~November 2015
- Substrate resistivities 20 Ohm 1k  $\Omega$  cm
- Depleted zone thicknesses:  $15/30\mu m$  ( $20/80\Omega cm$ ),  $50\mu m$  ( $200\Omega cm$ ),  $100\mu m$  ( $1k\Omega cm$ )
- Improvements added source follower for better timing and less power consumption
- Segmented pixels (16.6 µm)
- Run shared within ATLAS, Mu3e and CLIC
- CLIC area ~ 5cm x 5cm
- Cost of the whole run ~ 160k for two substrate types
- Intended power CLIC power per pixel ~1-2µW peaking time 20ns (capacitance 20fF) 160-320mW
- Pixel size 25 µm x 25 µm
- Probably possible 16.6 µm
- Present scheme ~10µA for 200fF (50 x 250) peaking time 20ns
- Runs in several other technologies planned e.g. Lfoundry and ESPROS
- Possibility to implement tests structures
- Possible synergy with ATLAS CCPD pixels for new RD53 chip will be 25µm x 25µm

### **CLIC** Pixel



- CLIC Pixel
- Size: 25µm x 25µm
- Analog signal is transferred to CLICPIX readout chip, no discriminator in pixel
- Simple and small pixels, small capacitance, smaller noise
- Spatial resolution can be improved and time-walk can be corrected by measuring of signal amplitudes
- Second stage amplifier added to increase output amplitude



#### **CLIC** Pixel



- Simplified schematics
- Problem amplifier too slow



#### Improvement



- Improvement
- Adding of buffer (source follower SF) makes the circuit faster



Improvement



• The second amplifier saturates for typical MIP signals (signals > 1500e)



#### Improvement



8

- The second amplifier saturates for typical MIP signals (signals > 1500e)
- This feature can be used to connect two pixels to one readout channel



### Waveforms







## Comparison of two pixel sizes (no charge sharing)





### Comparison of two pixel sizes (charge sharing)





## TSV

#### **Assembly Possibilities**







# Thank you!