

Preliminary results with capacitively coupled pixel detectors for CLIC the sequel

Daniel Hynds (on behalf of many people)

- Last collaboration meeting in Jan. presented results of then-recent november beam period
 - First CLIC measurements with capacitively coupled pixel detectors
 - Custom "active sensor" fabricated in 180 nm AMS High-Voltage CMOS technology
 - 2-stage amplification on the HV-CMOS
 - Precision glued to CLICpix readout chip, signal propagation by capacitive coupling

Proof of concept

- Results presented showed high efficiency with modest bias voltage
 - $\, \square \,$ Full efficiency with ~1200 electron threshold and 50+ V
 - Promising devices for further investigation
 - Collaboration comments received on paper to be updated before publication
 - Current draft at <u>https://cds.cern.ch/record/2010263</u> results presented at Trento 2015

Recent progress

Fabrication

- Before the production of different ASICs (see following talks) can still probe the requirements on device fabrication
 - Previously observed asymmetry in pixel response
 assumed to be coupling to CLICpix *via*
 - Sensitivity of parameters such as glue thickness and pad alignment not known

Assembly embeded in epoxy

Pad alignment and glue thickness

- Several samples produced at SET with the same pad alignment and with varying force to produce different glue thicknesses. Overall results:
 - Precision of ~ 1-1.5 µm obtained
 - Glue thickness for all samples was ~ 2 µm regardless of force applied

HV-CMOS pad

PH-DT Composite Lab

CLICpix pad + via

Pad alignment and glue thickness

- Several samples produced at SET with the same pad alignment and with varying force to produce different glue thicknesses. Overall results:
 - Precision of ~ 1-1.5 μm obtained
 - Glue thickness for all samples was ~ 2 µm regardless of force applied

PH-DT Composite Lab

CLICpix pad + via

Pad deformation

For samples glued with high force $(\sim 2 \text{ kg over } 1.6 \times 1.6 \text{ mm}^2)$ a noticeable deformation of the CLICpix pads appears to take place

Bond force 500 g

Bond force 2 kg

Samples for beam tests

- After cross-section measured for mechanical samples, several samples produced for measurement in beam tests
 - Asymmetry along the columns addressed by adjusting pad alignment to include the CLICpix *via*
 - Deliberate offsets in the lateral alignment added to determine the impact on device performance
 - Shifts of 0.25 pixels (6.25 μm) and 0.5 pixels (12.5 μm)
 - Samples with "thicker" glue (lower bonding pressure
 50 g) nb. unsure if these are really thicker!

Initial results

- Promising start => all samples show high efficiency at ~1200 electron threshold (60 V bias)
- Many puzzling questions analysis only just starting in detail
 - Higher efficiency observed for 0.5 pixel offset than for 0.25?
 - Better performance for samples with "thick" layer of glue
 - Variation between devices for nominally identical fabrication

Sample calibration

- Long chain of steps involved in final gain from deposited charge to measured ToT
 - Gain of HV-CMOS amplifier
 - Coupling capacitance
 - Injected current pulse shape
 - CLICpix gain
- Initial rough calibrations from HV-CMOS pulse to CLICpix ToT confirm the testbeam results
 - Work on HV-CMOS calibration ongoing

Cross coupling

Ideal alignment

- Alignment of the CLICpix *via* along the column removed the asymmetric contribution
- Deliberate offsets between columns starts to give asymmetric contributions and lower overall coupling

1400

1200 [-

1000

800

600

400

200

0

CLICdp Work

in Progress

0.1

0.1

Angled track data

- Two beam periods were granted in May due to change in SPS schedule
 - 1 week beam time, followed by 1 week down time and another 4.5 days beam
- Unexpectedly took data for all samples during first beam period
 - ~ 24 hour cycle of device change + measurement program
- Improvised the second beam period and took detailed angle scan on "ideal" sample

(Very) Preliminary results

- Initial results considering two aspects: change in tracking performance as a function of angle, and determination of the active depth (complimentary to edge TCT)
 - Resolution (sigma of a gaussian fit) remains ~ constant over the full range
 - No change in clustering simple ToT-weighted (no head-to-tail etc. as yet)
 - $\, \square \,$ Fit to cluster width in rotation direction gives estimate of active depth of order $\sim 30 \ \mu m$

Studies and further measurements

- Many studies now possible with the testbeam data set
 - Detailed studies of coupling dependence for misaligned samples, comparison with FE simulation
 - Study of signal propagation through devices, tuning of time constants
 - Tracking performance and variation between devices
 - Studies of charge collection as a function of depth
 - Optimisation for next iterations of HV-CMOS and CLICpix ASICs
- Lab studies required calibrations, IR laser tests, beam time requested at Diamond Light Source
- Reproducability of producing assemblies shown, along with some useful observations on pad design and bonding parameters
 - Next steps: new CLICpix and HV-CMOS ASICs towards the end of the year