Timepix calibration, simulation and test-beam data analysis

Sophie Redford - CLIC workshop - 02.06.15 with thanks to the LCD vertex group

Outline

- 1. Motivation & the six Timepix assemblies
- 2. Introduction to calibration
- 3. Where do the photons come from?
- 4. Data reconstruction
- 5. Available statistics
- 6. Peak finding with KDE & most likely TOT values
- 7. Threshold measurements
- 8. Surrogate fit global & pixel by pixel
- 9. Temperature dependence

10. Application to test-beam data & simulation validation

Motivation

Why calibrate six Timepix assemblies?

- 1. to find out about the assemblies
 - global calibration parameters
 - pixel calibration uniformity
- 2. to apply to test-beam data
 - to calculate depletion voltage
 - to calculate single-hit resolution
 - to validate simulation

The six assemblies:

Assembly	Sensor thickness (µm)	$V_{\rm Bias}({ m V})$	
A06-W0110	50	15	
B06-W0125	200	-50	
B07-W0125	300	40	
C04-W0110	50	15	
D09-W0126	100	35	
L04-W0125	100	35	

Introduction to calibrating

FOT (ADC)

Using photons of known energy to measure the response of the assemblies

All about two numbers:

- the energy of the photons (known)
- the most likely TOT (?)

Τ

Ι

Ι

Where do the photons come from?

- 1. Radioactive sources
 - at CERN
 - in TOT mode

Source	Energy (keV)	Lab	Mode
²⁴¹ Am	26.3 & 59.5	CERN	TOT
¹⁰⁹ Cd	22.1	CERN	TOT
⁵⁷ Co	6.4 & 14.4	CERN	TOT
⁵⁵ Fe	5.9	CERN	TOT

- 2. X-ray fluorescence
 - at CERN and LNLS
 - in TOT and counting mode

Target	Energy (keV)	Lab	Mode
CuIn	8.0 & 24.2	CERN	TOT
Co	6.9	LNLS	TOT
Cr	5.4	LNLS	TOT
Cu	8.0	LNLS	TOT
Fe	6.4	LNLS	TOT
Mn	5.9	LNLS	TOT
Ni	7.5	LNLS	TOT
Ti	4.5	LNLS	TOT
v	5.0	LNLS	TOT
Cu	8.0	CERN	Counting
In	24.2	CERN	Counting
Pd	21.2	CERN	Counting
Zr	15.8	CERN	Counting

Data reconstruction

We need to detect the whole photon energy in one pixel

Therefore we require single-pixel clusters Multi-pixel clusters can be formed by:

- 1. adjacent photon hits
- 2. charge sharing

In data we expect and find evidence of both

Hits per pixel: pattern due to undetected charge sharing with a masked pixel

Available statistics

- 1. Hit maps show good illumination of assemblies
- 2. Hits per pixel drops very low for certain sources/assemblies

Assembly	⁵⁵ Fe	⁵⁷ Co	¹⁰⁹ Cd	CuIn (XRF)	²⁴¹ Am
A06-W0110	963	9	307	17	944
B06-W0125	1226	404	81	442	765
B07-W0125	1114	9	223	9	642
C04-W0110	1383	298	110	53	638
D09-W0126	900	20	109	14	976
L04-W0125	1741	310	171	14	1432

Average number of hits per pixel

Peak finding with KDE

- 1. Kernel density estimation to find the most-likely TOT value(s)
- 2. Use gradient of KDE to identify peak(s)

0.008 Peak: $650 \pm \frac{4.98}{16.61} \pm 4.04$

160

Hist & KDE

A06-W0110 Cd

320 480 TOT (ADC)

640

800

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0.000

0

peak: zero and falling

0.002

0.001

0.000

0

140

280 420 TOT (ADC)

420

560

700

But peaks can be lost at ulletlow statistics

Most likely TOT per pixel

- Already gives indication on assembly uniformity
- Most assemblies seem uniform (like C04-W0110)
- L04-W0125 the most non-uniform

Threshold measurements

Performed in counting mode with X-ray fluorescence measurements at CERN

- 1. Count hits per frame whilst threshold is varied
- 2. Take derivative of count as a function of threshold, peak position (Repeat for other photon sources)
- 3. Fit straight line to peak positions
- 4. Extrapolate to zero energy to find threshold in energy

Surrogate fit - global

- 1. Global data points statistically extremely accurate
- 2. Systematics relevant

Surrogate fit - pixel

- The surrogate function has four degrees of freedom a, b, c, t
- We require 5 data points to make the fit
- Maps of fitted parameters show assembly uniformity
- Still to come: a check to remove badly fit pixels (use χ²/ndf, will need systematic uncertainties)

Number of pixels:

	A06-W0110	B06-W0125	B07-W0125	C04-W0110	D09-W0126	L04-W0125
Masked	8	789	394	493	293	344
No fit	14	789	549	500	315	344
Bad fit	still to come					

Temperature dependence

- Peak positions found to depend on time due to temperature change
- Took data with fan on/off: ~12°C change means 2-3% change in TOT
 - in test-beam: no fan. lower occupancy might mean lower temperature
- What is the temperature (and it's variation) in test beam?
 - no fan, lower occupancy might mean lower temperature
 - temperature extraction from log files ongoing
 - might lead to systematic? scaling?

Application to test-beam

Once the calibration is finalised it will be applied to test-beam data in order to calculate:

- 1. sensor depletion voltage
 - TOT to energy
 - Landau peak position
 - with varying bias V
 - plateau marks fully depleted region

- 2. single-point resolution from energy
 - eta correction method uses 'charge'
 - can use TOT or energy
 - calibrated energy might improve resolution

Simulation validation

Summary

- Six Timepix assemblies → data recorded → analysed Thanks team!
- Source and X-ray fluorescence measurements from CERN and LNLS
- Peak finding method with Kernel Density Estimation
- Threshold measurements derived
- Parametrisation of calibration from Surrogate function fit
- Assemblies sometimes uniform, sometimes less so
- What's left: systematics (temperature), then finalise test-beam, simulation
- See for yourself:

https://svnweb.cern.ch/trac/clicdet/browser/trunk/doc/Timepix_Calibration/ https://github.com/LCDsoft/TimepixCalibration

Thanks for your attention!