Simulation studies for the main tracker

A. Nürnberg, M. Münker

CLICdp collaboration meeting, CERN, 03. 06. 2015

Outline

► Occupancy due to beam induced background

- \triangleright Detector simulation in mokka
- Analysis of hit density from incoherent pairs and $\gamma\gamma \rightarrow$ hadron events
- \rightarrow limits on strip/pixel size in the main tracker

\blacktriangleright Detector response

- \triangleright T-CAD finite element simulation
- \blacktriangleright Charge sharing and cluster size
- \blacktriangleright Spacial resolution
- \rightarrow do we benefit from analog readout?

Beam induced background, occupancy

Beam induced background, detector model

- \triangleright Detector simulation using mokka
- \triangleright CLIC ILD CDR detector model as starting point (4 T field)
- \triangleright Removal of TPC and silicon tracking layers
- \blacktriangleright Insert all-silicon tracker, tracker support tube and modified beampipe
- Incoherent pairs and $\gamma\gamma\to$ hadron background samples at 3 TeV
- \triangleright Study hit rates in the silicon tracker
- \triangleright New analysis code, validated against results published in CDR

Tracker geometry

- \blacktriangleright Current tracker layout and beampipe geometry
- \triangleright CF support tube implemented (5 mm wall)
- \blacktriangleright Endcap discs split in inner and outer part
- ▶ CLIC ILD CDR vertex detector (3 double layers)
- ▶ CLIC ILD CDR forward region

Hitrate in main tracker

- \blacktriangleright Hitrate from incoherent pairs and $\gamma\gamma\rightarrow$ hadrons in the main tracker
- ▶ No digitization, no clustering, no safety factors

Occupancy in the main tracker

- \triangleright Calculate occupancy, assuming 100 mm \times 50 µm strips, avg. cluster size 2.6, apply safety factors 5 (pairs) and 2 (gghad)
- ► Large cell size leads to high occupancy, up to $\geq 100\,\%$

Max. strip length in the main tracker

► Maximal strip length to keep occupancy per bunch train at 3 %, assuming 50 µm strip pitch, avg. cluster size 2.6, safety factors 5 (pairs) and 2 (gghad)

Sensor simulation

Motivation

- \blacktriangleright For overall detector performance, 7 µm single point resolution in main tracker required. How to achieve?
- \blacktriangleright Spatial resolution can be improved over the binary limit of $\frac{p}{\sqrt{12}}$, if charge is shared among two cells. Can we benefit from that?

From: Analysis of Timepix test beam data, Sophie Redford, CLIC workshop, Jan. 2015

- \blacktriangleright Aims of this study:
	- 1. Understand the variation of the cluster size with thickness
	- 2. Evaluate possible ways to modify the sensor design in order to increase spatial resolution, especially in thin sensors
	- 3. Support decision on possible readout scheme (digital or binary) for tracker frontend

Sensor

- \triangleright T-CAD finite element simulation of silicon sensor
- \triangleright As starting point: AC-coupled p-in-n silicon strip sensor, best guess of process details, 2 dimensional cut, no B-field (yet)
- \triangleright Simulate particle hit at several positions in the strip unit cell, fixed incidence angle
- **•** Readout of current signal \rightarrow integration over time \rightarrow charge signal per strip

T-CAD results - Cluster size

- \triangleright Compare signals to threshold level
- \blacktriangleright Estimate fraction of multi-hit clusters

 \triangleright Good agreement to testbeam results

Particle hit position / pitch

Sensor thickness / µm

Toy monte carlo - Efficiency

- Efficiency as function of applied threshold
- \blacktriangleright Efficiency fall-off defines upper threshold limit, lower limit is set by noise occupancy
- \blacktriangleright Efficiency as function of track hit position relative to strip (perpendicular incident)
- \blacktriangleright Due to charge sharing, inefficiency most pronounced for tracks hitting directly between the two strips

Toy monte carlo - Resolution

- \triangleright Reconstruct particle hit position
- \blacktriangleright Center of gravity or η -method
- \triangleright Residual by comparison to MC-truth particle hit position
- \triangleright Resolution as function of applied threshold
- \blacktriangleright No significant benefit from analog readout compared to binary readout

$$
\blacktriangleright \sigma \approx 7 \,\mu\text{m} \approx \frac{\rho}{\sqrt{12}}
$$

Toy monte carlo - Inclined incident

- \triangleright No significant benefit from analog readout over binary readout for small incident angle
- At large angle (low- p_T tracks), analog readout benefits from increased charge sharing

Toy monte carlo - Inclined incident

- \blacktriangleright No significant benefit from analog readout over binary readout for small incident angle
- At large angle (low- p_T tracks), analog readout benefits from increased charge sharing
- \blacktriangleright However, for low- p_T tracks, the overall detector performance is dominated by multiple scattering and not by the single point resolution

Summary

- \triangleright Occupancy due to beam induced background restricts the maximal possible strip length in the main tracker
	- \blacktriangleright Few millimeters in the inner layers
	- \blacktriangleright Few centimeters in the outer layers
- \triangleright Simulation study on charge sharing
	- \triangleright T-CAD simulation reproduces the trend of increased charge sharing in thick sensors as seen in timepix testbeam
	- \triangleright Simple toy model allows estimation of efficieny and resolution as function of operation parameters (threshold, noise, frontend adc resolution,...)
	- \triangleright No real benefit in resolution from charge sharing and analog readout in thin planar sensors \Rightarrow binary readout, $\sigma = \frac{\rho}{\sqrt{12}}$
	- \blacktriangleright However, planar sensor might (most certainly) not be the final answer for the main tracker
	- $\triangleright \Rightarrow$ Possibility to look at other technologies by replacing T-CAD simulation part only

Backup

Hitrate in VXD

Incoherent pairs and $\gamma\gamma \rightarrow$ hadrons in the vertex detector

 \triangleright No z-dependence, steep fall-off in r

Occupancy in VXD

Incoherent pairs and $\gamma\gamma \rightarrow$ hadrons in the vertex detector (assuming $25 \mu m \times 25 \mu m$ pixels, cluster size 5, safety 5 and 2)

 \triangleright With this parameters, occupancy $\leq 3\%$

Delta electrons in T-CAD

- \triangleright No direct way to include delta electons in T-CAD
- \triangleright Simple geant simulation to record energy deposit after particle incident with fine granularity, $O(nm)$
- \blacktriangleright Average over many events
	- \blacktriangleright Sharp core
	- \triangleright Significant tails (delta electrons, scattering) over several 100 µm
- \triangleright Take recorded energy deposits from geant4 as averaged input for charge carrier generation to T-CAD

Noise rate - Rice formula

Noise hit rate: $f_t = \frac{f_0}{2} \exp\left(-\frac{v_{th}^2}{2\sigma^2}\right)$ with $f_0 = \frac{1}{2\sqrt{2}}$ $rac{1}{2\sqrt{3}\tau}$

- Frequency at which a given threshold level v_{tb} is passed
- \blacktriangleright Shaping time τ limits bandwidth
- \triangleright Take CLIC active cycle of 156 ns into account
- \triangleright With 100 ns shaping time, $V_{th}/\sigma = 3$ results in a noise occupancy of 2.5 \times 10^{-3} per bunch train

 $\text{Re}(\text{CERN})$ Andreas Nürnberg: $\frac{d}{d}$ different construction studies for the main tracker 03. 06. 2015 21