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Outline

I Occupancy due to beam induced background
I Detector simulation in mokka
I Analysis of hit density from incoherent pairs and γγ →hadron

events

→ limits on strip/pixel size in the main tracker

I Detector response
I T-CAD �nite element simulation
I Charge sharing and cluster size
I Spacial resolution

→ do we bene�t from analog readout?
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Beam induced background,

occupancy
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Beam induced background, detector model

I Detector simulation using mokka
I CLIC_ILD_CDR detector model as starting point (4T �eld)
I Removal of TPC and silicon tracking layers
I Insert all-silicon tracker, tracker support tube and modi�ed

beampipe
I Incoherent pairs and γγ → hadron background samples at

3TeV
I Study hit rates in the silicon tracker
I New analysis code, validated against results published in CDR
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Tracker geometry

I Current tracker
layout and beampipe
geometry

I CF support tube
implemented (5mm
wall)

I Endcap discs split in
inner and outer part

I CLIC_ILD_CDR
vertex detector
(3 double layers)

I CLIC_ILD_CDR
forward region
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Hitrate in main tracker

I Hitrate from incoherent pairs and γγ → hadrons in the main
tracker

I No digitization, no clustering, no safety factors
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Occupancy in the main tracker

I Calculate occupancy, assuming 100mm× 50 µm strips, avg.
cluster size 2.6, apply safety factors 5 (pairs) and 2 (gghad)

I Large cell size leads to high occupancy, up to ≥ 100%
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Max. strip length in the main tracker

I Maximal strip length to keep occupancy per bunch train at
3%, assuming 50 µm strip pitch, avg. cluster size 2.6, safety
factors 5 (pairs) and 2 (gghad)
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Sensor simulation

Andreas Nürnberg:
Simulation studies for the main tracker

03. 06. 2015 8



Motivation

I For overall detector
performance, 7 µm single point
resolution in main tracker
required. How to achieve?

I Spatial resolution can be
improved over the binary limit
of p√

12
, if charge is shared

among two cells. Can we
bene�t from that?
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From: Analysis of Timepix test beam

data, Sophie Redford, CLIC workshop,

Jan. 2015

I Aims of this study:
1. Understand the variation of the cluster size with thickness
2. Evaluate possible ways to modify the sensor design in order to

increase spatial resolution, especially in thin sensors
3. Support decision on possible readout scheme (digital or binary)

for tracker frontend
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Sensor

I T-CAD �nite element simulation of silicon sensor

I As starting point: AC-coupled p-in-n silicon strip sensor, best
guess of process details, 2 dimensional cut, no B-�eld (yet)

I Simulate particle hit at several positions in the strip unit cell,
�xed incidence angle

I Readout of current signal → integration over time → charge
signal per strip
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T-CAD results - Cluster size

I Compare signals to
threshold level

I Estimate fraction of
multi-hit clusters
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Toy monte carlo
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Toy monte carlo - E�ciency
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I E�ciency as function of applied
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I E�ciency fall-o� de�nes upper
threshold limit, lower limit is
set by noise occupancy
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I Due to charge sharing,
ine�ciency most pronounced
for tracks hitting directly
between the two strips
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Toy monte carlo - Resolution

 / mm reco. - X trueX
-0.03 -0.02 -0.01 0 0.01 0.02 0.03

A
rb

itr
ar

y 
un

its

0

2000

4000

6000

8000
Total

1 hit clusters

2 hit clusters

-, threshold = 1500 / e-m, noise = 300 / eµm, thickness = 50 µPitch = 25 

I Reconstruct particle hit
position

I Center of gravity or η-method

I Residual by comparison to
MC-truth particle hit position
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I No signi�cant bene�t from
analog readout compared to
binary readout

I σ ≈ 7 µm ≈ p√
12
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Toy monte carlo - Inclined incident
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I At large angle (low-pT
tracks), analog readout
bene�ts from increased
charge sharing
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Toy monte carlo - Inclined incident
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I No signi�cant bene�t from
analog readout over binary
readout for small incident
angle

I At large angle (low-pT
tracks), analog readout
bene�ts from increased
charge sharing

I However, for low-pT tracks,
the overall detector
performance is dominated
by multiple scattering and
not by the single point
resolution
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Summary

I Occupancy due to beam induced background restricts the
maximal possible strip length in the main tracker

I Few millimeters in the inner layers
I Few centimeters in the outer layers

I Simulation study on charge sharing
I T-CAD simulation reproduces the trend of increased charge

sharing in thick sensors as seen in timepix testbeam
I Simple toy model allows estimation of e�cieny and resolution

as function of operation parameters (threshold, noise, frontend
adc resolution,...)

I No real bene�t in resolution from charge sharing and analog
readout in thin planar sensors ⇒ binary readout, σ = p√

12

I However, planar sensor might (most certainly) not be the �nal
answer for the main tracker

I ⇒ Possibility to look at other technologies by replacing
T-CAD simulation part only
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Backup
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Hitrate in VXD

I Incoherent pairs and γγ → hadrons in the vertex detector
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I No z-dependence, steep fall-o� in r
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Occupancy in VXD

I Incoherent pairs and γγ → hadrons in the vertex detector
(assuming 25 µm× 25 µm pixels, cluster size 5, safety 5 and 2)
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I With this parameters, occupancy ≤ 3%
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Delta electrons in T-CAD

I No direct way to include delta electons in T-CAD

I Simple geant simulation to record energy deposit after particle
incident with �ne granularity, O(nm)

I Average over many events
I Sharp core
I Signi�cant tails (delta electrons, scattering) over several

100 µm

I Take recorded energy deposits from geant4 as averaged input
for charge carrier generation to T-CAD
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Noise rate - Rice formula

Noise hit rate: ft =
f0
2
exp

(
− v2

th

2σ2

)
with f0 =

1

2
√
3τ

I Frequency at which a given threshold level vth is passed
I Shaping time τ limits bandwidth
I Take CLIC active cycle of 156 ns into account
I With 100 ns shaping time, Vth/σ = 3 results in a noise

occupancy of 2.5× 10−3 per bunch train170 SIGNAL PROCESSING
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Fig. 4.32. Noise pulses will exceed an amplitude threshold with a rate dependent on

the threshold setting.

How small a detector pulse can still be detected reliably? Consider the sys-
tem at times when no detector signal is present. Noise will be superimposed on
the baseline and some fraction of the noise pulses will cross the threshold, as
illustrated in Figure 4.32. Since the amplitude distribution of the noise is Gaus-
sian, some noise pulses will always cross the threshold regardless of the threshold
setting, but the noise rate will vary with threshold. With the threshold level set
to zero relative to the baseline, all of the signal pulses and all of the noise pulses
will be recorded.

Assume that the desired signals are occurring at a certain rate. If the de-
tection reliability is to be > 99%, then the rate of noise hits must be less than
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Fig. 4.33. In a binary system the threshold must be set low enough to capture most

of the signal, but high enough to reduce the noise rate to an acceptable level. The

noise rate is invariably much higher than the signal rate. For the sake of illustration

the signal rate is shown much higher than typically acceptable. In this example the

threshold setting is beginning to reject signal pulses, but a noticeable rate of noise

pulses still exceeds threshold.

From: Helmut Spieler,

Semiconductor Detector Systems
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