CLICdp welcome + news from CLIC staging baseline

Welcome !

Welcome to the CLICdp meeting !

https://indico.cern.ch/event/376800/

56 persons inscribed, ~19 institutes represented

Apologies for the early morning start and dense agenda (due to overlap with AIDA-2020 kick off meeting)

Practical details:

- All presentations in CERN council room
- Institute Board meeting (restricted to IB members) in room 4-S-030 Today at 12 hrs (sandwiches provided)
- Workshop photo: today, at end of last session, ~18 hrs

Workshop dinner

Where:

Fromagerie Michelin Grilly (near Divonne), France

Transport:

Bus at 18:45 hrs At CERN reception, building 33 Departure 19 hrs sharp!

Menu (local products): Salads + Charcuterie Cheese Fruit + Ice cream

Payment:

38 Euro (or 40 CHF), wine included Advance payment with Kate Ross Today during coffee breaks

Lucie Linssen, CLICdp meeting, June 2 2015

CLIC re-baselining

Requirement, following the discussion at January 2015 CLIC workshop:

- First stage: E_{cms} =380 GeV, L=1.5x10³⁴cm⁻²s⁻¹, L_{0.01}/L>0.6
- Second stage: E_{cms}=~1.5TeV,
- Final stage: E_{cms} =3 TeV, $L_{0.01}$ =2x10³⁴cm⁻²s⁻¹, $L_{0.01}/L>0.3$

Optimised solution, by Daniel Schulte et al.

- Optimised acc. structures for 380 GeV (which are also compatible with klystron powering) at 72 MV/m.
- 4 deceleration sectors for 380 GeV
- Add different structures when going to high energies => good solution exists close to the current R&D on "CLIC_G" structures (with small change in length and aperture) at 100 MV/m.
- Adding 21 sectors yields 3.01 TeV.

CLIC parameters at 380 GeV

parameter	unit	value
Ν	10 ⁹	5.2
n _b		352
$ au_{RF}$	ns	244
f _{rep}	Hz	50
G	MV/m	72
ϵ_x/ϵ_y	μm/nm	0.95/30
σ _x /σ _y	nm/nm	149/2.9
σ_{z}	μm	70
L _{total}	10 ³⁴ cm ⁻² s ⁻¹	1.5
L _{0.01}	10 ³⁴ cm ⁻² s ⁻¹	0.9
n _γ		1.5

(emittances at the IP)

CLIC re-baselining status

Assumptions for annual running:

- CDR => based on 200 days/year at 50% efficiency (accelerator + data taking combined) => 0.86×10⁷ seconds per year
- New assumption => 250 days/year (8 months) at 50% efficiency (accelerator + data taking combined) => 1.08×10⁷ seconds per year

=> => may require some scaling of our benchmarking results

(~0.6 ab⁻¹, ~1.6 ab⁻¹, 2.4 ab⁻¹)

Editing of re-baselining document has started

- Expect a first full draft by end July 2015
- Physics part based on CDR, CLIC Snowmass paper and CLICdp Higgs paper

=> => hope to complement with more info on top couplings

Enjoy the meeting !