Main Tracker Geometry & Performance

Rosa Simoniello

CLICdp collaboration meeting, 2-3 June 2015, CERN

Thanks to the tracker optimisation group

Outline

- Main tracker layout
- Comparison with CDR
- Material budget towards a realistic model:
 - Cables, cooling and supports
 - Support tube
- Optimisation of the layer layout inside the model:
 - Change length/r position of first barrel layer
 - Optimise gaps between barrel and endcap disks
 - Change position of inner tracker disks w.r.t. outer tracker disks
 - Change length of barrel layers

Fast simulation (LDT), single point resolution 7µm

Layout comparison

Beam pipe

Support tube

Model for the support tube

VERY PRELIMINARY

- In the CDR design the support tube was supporting only the vertex detector. X ~ 0.18%X₀
- Hypothesis for realistic support tube: 5mm of carbon → X ~ 3%X₀ => 1.5%X₀ per wall
- M.b. scan performed around the realistic support tube value: 1.0%X₀, 1.5%X₀, 2.0%X₀

Supports

Model for supports

- For outer radii larger material is needed in order to match stability requirements
- Rough implementation: material for outermost layer 3 times larger than for innermost, linearly rescaled for layers in between → Szymon is studying possibilities on the engineer side

m.b. after scaling: barrel 1: 0.48% X_0 barrel 2: / barrel 3: 0.96% X_0 barrel 4: 1.20% X_0 barrel 5: 1.44% X_0

Cables

Model for cables

- Material budget for cables and cooling should scale according to the layers size and position
- Assumed constant cable/cooling density $x_{cyl} : A_{cyl} = x_{ring} : A_{ring}$

Results changing m.b. for cables

- Material budget for support fixed: 0.48%X₀ (barrel), 0.5%X₀ (forward)
- Material budget for sensor fixed: 0.5%X₀ (barrel), 0.88%X₀ (forward)
- Material budget for cables varied: 0.5%X₀, 1.0%X₀, 1.5%X₀, 2.0%X₀

→ As expected in the cable region (30°–50°) worsening of the p_{τ} resolution, small effect on the d_0 resolution (dominated by vertex detector)

Cooling

PUTTING ALL TOGETHER: PERFORMANCE COMPARED WITH CDR

Nhits vs theta

Momentum resolution vs theta

Momentum resolution vs p

Optimisation of the model

- Compensating effects between extra hits and extra m.b.
- Repeat studies in full simulation to look at the variation in the track parameters and errors

Optimise gap between barrel/forward and the outer radius of the forward disk

Possible variations of the model

• So far, not very promising, but still to look at

- Displacement of 30-60-90mm
 between position of the inner
 layers and the outer layers
- No change in performance, gaps are not poiting to IP

- Change of the length of the barrel layers → need to increase m.b. for support for stability requirement (possible?)
- Drop a forward disk

Conclusion

- Model for the tracking is not final yet, but we are converging:
 - Optimisation still ongoing
 - Moving towards a more realistic model
 - m.b. and space for services started to be taken into account
- Soon, validation in full simulation and reconstruction (status report tomorrow):
 - Information on the tracking quality
 - Different topologies available

M.b. for cables :results vs momentum

Results changing m.b. for supports

- Material budget for cables fixed: 1.0%X₀
- Material budget for sensor fixed: 0.5%X₀ (barrel), 0.88%X₀ (forward)
- Material budget for support varied: 0.5%X₀ (starting point) , 1.0%X₀, 1.5%X₀, 2.0%X₀
- \rightarrow As expected worsening of the performance at the increasing of the m.b.

m.b. for supports: results vs momentum

Layout: change "barrel-endcap angle"

Results – single µ, p = 100 GeV

 Some "peaks" in distributions correspond to low nhits but correlation not completely clear

Results vs momentum

Displacement

Change r position of first barrel layer

- Scan of r1 from 230mm to 210, 220, 240, 250mm
- Small changes in performance
 → if needed for occupancies
 reason the layer can be moved.

Change length of first barrel layer

- The only constraint (beyond cost) for the length of the first barrel layer is the position of the first forward inner disk
- z1 varied from 430mm to 450mm, 500mm, 600mm, 700mm → for d₀, for 30-45deg, shorter barrels are preferred probably due to the less m.b. crossed by the particle

N hits for r1 and z1 scan

