

Quo Vadis?

N.Siegrist, H. Gerwig, A. Gaddi CERN, PH Department

Outline

- Historical Review
- Practical Implications as a single detector
- Keeping unique engineering features
- Summary

Former boundary conditions

- Very short L* with qdo inside detector
- Two Detectors in push-pull mode
- Stringent requirements on fringe field
- Radiation self-shielding
- Similar length for both detectors needed

Former detector layouts

Former main dimensions

Table 11.1: Main dimensions and weights of both detectors

Parameter	CLIC_SiD	CLIC_ILD with end-coils			
Magnetic Yoke length	12400 mm	12400 mm			
Detector everall length	12800 mm	12800 mm			
Detector diameter	→ 14000 mm	14000 mm			
Free bore inside vacuum tank	5488 mm	6852 mm			
Coil inner diameter	5828 mm	7202 mm			
Coil outer diameter	7008 mm	7888 mm			
Coil length	6230 mm	7890 mm			
Coil weight	201 tons	173 tons			
Vacuum Tank weight	128 tons	173 tons			
Radial height vacuum tank	1020 mm	828 mm			
Vacuum Tank length	6690 mm	8350 mm			
L*	3500 mm	4340 mm			
Free bore in Endcap for support tube and anti- solenoid 1380 mm					
Single Endcap weight	2900 tons	2100 tons			
Barrel weight	5000 tons	4700 tons			
Complete return yoke	10800 tons	8900 tons			
Total weight of detector	→ 12500 tons	10800 tons			

Former civil engineering

Pit diameter: 18 meter

Fig. 11.11: Top view with dimensions.

UXC length: 62 meter

UXC width:31,5 meter

UXC height: 33,5 meter

Fig. 11.12: Side view with dimensions.

Actual boundaries for a single CLIC detector

- Final quadrupole is in the tunnel
- L* fixed to be 6 m
- No stabilisation inside the detector needed
- Increase of solid angle coverage in endcap region
- No real self-shielding for personel needed
- No stringent stray field conditions
- Platform still needed? Frequency of movements lower

What now?

It's more complicated than that.....example? See next slide

The solution strongly depends

Close to perfect engine:

- ✓ Light
- ✓ All you need
- Cheap
- Etc. etc

.....on the priorities!

Please explain its success! Have a thought!

Back to CLIC

In graphics mode

Also the barrel may be cut

Or truncate here and move end-caps in!

Truncated outside (endcap)

Magnetic flux has increased 17 % w.r.t CLIC_ILD

And CLIC_ILD iron part had a length of 6,20m (!) whereas now we have to fit within ca. 5,75m

→increased current in endcoils

Another point: short beam stops

Still need for a 4500t platform?

Proposal for modifications

- Save weight by accepting stray field
- Introduce a 'minibouchon' in the endcap
- Truncate barrel part by using tungsten in the HE part
- Recuperated length to be put as iron in the endcap
- Reduce number of muon layers to max 6 better 4
- Suppress the platform (may serve as fall back solution)
- Reduce diameter in pit and UXC

A possible new layout

A possible new layout

Move away from 1P, TS

Short technical stop

Normal shut down, full opening

Service routing, patch panels

Keeping unique features

- Keep state-of-the-art engineering solutions
- Like the air cooled pixel detector
- Ring end-coils to fine tune magnetic leaks
- Check use of nickel-doped aluminium for the coil
- See A. Yamamoto's talk at 13th Pisameeting last week

Nickel-doped Aluminium

Courtesy A. Yamamoto at 13th Pisameet

Further Possible Development on Strength and RRR

CMS structure and ATLAS-CS alloy may be combined

	Rein- force	Feature	Al Y.S. (MPa)	Full cond. Y.S.	Full cond. RRR
ATLAS- CS	Uniform	Ni-0.1% Al	110 MPa	146 MPa	590
смѕ	Hybrid	Pure-Al & A6082-T6	26/428	258	1400
Future	Hybrid	Ni-Al & A6082-T6	110/428	300	300
Future	Hybrid	Ni-Al & A7020-T6	110/677	400	300

A. Yamamoto, 15/05/26

Pisa-Meeting

26

25

Keeping unique features

- State-of-the-art engineering solutions
- Like the air cooled pixel detector
- Ring end-coils to fine tune magnetic leaks
- Check use of nickel-doped aluminium for the coil
- See A. Yamamoto's talk at 13th Pisameeting last week
- CMS decision to build a tungsten/silicon HE

CMS latest news

- CMS chooses high granularity end-cap calorimter for HL-LHC
- Ready for Run4 in 2025

Summary

- Several new unique features have been presented:
- 1. Reduced weight (total detector: 7800 tonnes)
- 2. Minibouchon for quick access
- 3. Tungsten in HE, this allows to equilibre endcap mass
- 4. Thus reducing endcoils' power needs
- 5. Detector moving without a platform is possible
- 6.Smaller shaft/cavern possible
- There is plenty of room for discussions