Towards a comparison of the Analogue and Digital HCAL

Coralie Neubüser CLICdp Collaboration Meeting Cern, 02.06.15

CALICE hadron calorimeters overview

- CALICE developed highly granular sampling hadron calorimeters based on scintillator tiles and RPCs (Resistive Plate Chambers)
 - With analogue, digital and semi-digital read-out

- + Semi-digital, 2bit readout
- Number of hits above each of 3 thresholds

Digital, 1bit readout of 1x1cm² pads

Number of hits ~ particle energy

N_{hits}

Coralie Neubüser | CLICdp Collaboration Meeting | 02.06.15 | Page 2

Study differences (medium, read-out, granularity) & their impact on energy resolution

- Read-out & energy reconstruction
 - with AHCAL, (semi-) digital energy reconstruction is possible
- Active medium & Granularity
 - validate simulation, to study AHCAL in 1x1cm² granularity

Until now studied for Fe absorbers, but of course interesting for W absorbers as well

> AHCAL simulation validation & AHCAL in 1x1cm² granularity

Fe-DHCAL status

- Geant4 & Mokka model
- Digitisation / RPC response simulation
- Data calibration
- First results from Digitiser tuning
- Outlook

Results from the CALICE Analysis Note 049

- Study of digital energy reconstruction procedures for the Fe-AHCAL
 - Analogue, digital & semi-digital
 - Digital capabilities limited by granularity
 - Semi-digital energy reconstruction makes up partially for digital limitations (similar to Software Compensation Techniques)

Validated the simulation

AHCAL with DHCAL granularity

- > Both simulations include SiPM response and its calibration + optical crosstalk
- > Remaining differences:
 - No cell-wise calibration&correction constants for 1x1cm² (default values from database used)
 - No noise runs for 1x1cm² AHCAL, but noise not relevant for newest SiPMs

1x1cm² AHCAL resolution

- Differences in resolution due to threshold effects
- For small energies 1x1cm² granularity beneficial
- For higher energies, difference depends on threshold
- > Higher granularity decreases stochastic term
- Investigation of digital reconstruction is still ongoing

Status of DHCAL

- No published comparison of data & MC
- > DHCAL funding in US terminated by DOE
- Person power very limited also for WDHCAL effort
- > Use common analysis tools as far as possible

Simulating Fe-DHCAL tb @ Fermilab geometry

- Started with W-DHCal implementation in Mokka
- Replaced absorber structure
 - Same stack for Fe-AHCAL

6

> Use same TCMT (already consisting of Fe)

Sensitive detector volume RPCs

 Gas mixture (94.5% Freon(Dichlorodifluoromethane), 5% C4H10(Butan), 0.5% SF6(Sulfur hexafluoride))

 Cassette: fishing lines, steel sheets, mylar, glass, boards, asics, resistive layer, aluminum frame

Steel Support Tungsten Absorber Steel Sheet Thick Mylar Thick Thick Thick Glass Glass Glass Gas+Fl Thin Thin Thin Glass Glass Glass Thin Mylar Pad Board PCB ASIC Copper Sheet

RPC response simulation

- Output of Geant4+Mokka are raw points of ionisation
- Next step simulation of RPC charge avalanche & read-out
- 1. Exponential d_{cut} 1.4mm, only one avalanche
- 2. Generating charge randomly (following parametrization from data taken with analog RPC

- 3. Allowing shift Q = Q_{tot} Q₀ (0.8pC)
- 4. Model radial charge distribution in RPC with RPCSim5 model as double-Gaussian

$$f(r) = R \cdot e^{-\frac{r^2}{(2\sigma_1)^2}} + (1-R)e^{-\frac{r^2}{(2\sigma_2)^2}}$$

ChargeSpreadParameters: σ_1 =0.7 σ_2 =7 R=0.18 within 4cm

5. Threshold: TT 0.15pC

To match simulation to data, charge reduced on boundaries, charge is spread only within RPC modules

For tuning of σ_1 , σ_2 , R, TT and Q_0 use muons

Tuning of d_{cut} use electrons

- In simulations every RPC is in same condition
- > For tuning of simulation, data needs to be understood and calibrated

Coralie Neubüser | CLICdp Collaboration Meeting | 02.06.15 | Page 11

- In simulations every RPC is in same condition
- > For tuning of simulation, data needs to be understood and calibrated

- List of dead Asics & dead/missing front-end boards
- + list of hot cells
- → Excluded from data & simulation runs

- In simulations every RPC is in same condition
- For tuning of simulation, data needs to be understood and calibrated
- → Correct data for HV differences, temperature/gas pressure variations by
 - Full calibration, weights each hit dependent on the local mu and eff of its RPC

- In simulations every RPC is in same condition
- For tuning of simulation, data needs to be understood and calibrated
- → Correct data for HV differences, temperature/gas pressure variations by
 - Full calibration, weights each hit dependent on the local mu and eff of its RPC
- Found some discrepancies in old calibration values
- → Apply "in situ" calibration for each RPC

- In simulations every RPC is in same condition
- For tuning of simulation, data needs to be understood and calibrated
- → Correct data for HV differences, temperature/gas pressure variations by
 - Full calibration, weights each hit dependent on the local mu and eff of its RPC
- Found some discrepancies in old calibration values
- → Apply "in situ" calibration for each RPC
 - Used clustering algorithm for MIP like tracks in data runs (tracks before and after point of interest)

- In simulations every RPC is in same condition
- For tuning of simulation, data needs to be understood and calibrated
- → Correct data for HV differences, temperature/gas pressure variations by
 - Full calibration, weights each hit dependent on the local mu and eff of its RPC
- Found some discrepancies in old calibration values
- → Apply "in situ" calibration for each RPC
 - Used clustering algorithm for MIP like tracks in data runs (tracks before and after point of interest)
 - Extracted efficiency and multiplicity for each RPC in cleaned region (don't want to correct for inefficiencies due to fishing lines ect., this is included in simulation)
 - in case of not sufficient statistics, less than 500 entries per module, use εμ from different module of layer (usually the middle one)

Calibration validation with muons

Muon selected by Muon Tagger + topological PID

> Nicely corrected response to $\varepsilon_0 = 0.97, \mu_0 = 1.69$

Fe-DHCAL data "fully calibrated"

Pion response extracted from Gaussian fits within +2 -1.5 sigma and the positron response from fits within +/-2 sigma

- Slight straightening seen
- > Ready to tune digitisation parameters

Quick reminder: RPC response simulation

- Output of Geant4+Mokka are raw points of ionisation
- Next step simulation of RPC charge avalanche & read-out
- 1. Exponential d_{cut} 1.4mm, only one avalanche
- 2. Generating charge randomly (following parametrization from data taken with analog RPC

- 3. Allowing shift Q = Q_{tot} Q₀ (0.8pC)
- 4. Model radial charge distribution in RPC with RPCSim5 model as double-Gaussian

$$f(r) = R \cdot e^{-\frac{r^2}{(2\sigma_1)^2}} + (1-R)e^{-\frac{r^2}{(2\sigma_2)^2}}$$

ChargeSpreadParameters: σ_1 =0.7 σ_2 =7 R=0.18 within 4cm

5. Threshold: TT 0.15pC

To match simulation to data, charge reduced on boundaries, charge is spread only within RPC modules

For tuning of σ_1 , σ_2 , R, TT and Q_0 use muons

Tuning of d_{cut} use electrons

First results of digitiser tuning

- Starting parameters from earlier efforts
- > 5 different values for each of 5 parameters
- Run all possible 3125 permutations
- Set best fit by chi2 test of <#hits>
- Results show range needs to be extended for some parameters 32GeV muons

Before going on with tuning...

Outlook

- 1. Improve Mokka implementation:
 - Add upstream material, like @Fermilab tb
 - Add beam profile
- 2. Rerun digitiser tuning also for d_{cut} with electrons
- 3. Validate pion simulation
- 4. Compare with Fe-AHCAL in digital mode

Many thanks to W-DHCAL group, Christian & Thibault!

Backup

Fe-DHCAL TB data is converted to slcio, run list following CAN-042

- E2=(600139 600140 600143 600145 600147 600148 600149 600150 600152 600153 600154 600155 600156 600157 600158 600159 600160 600161 600162 600163 600164 600165 600166)
- E4=(600089 600091 600092 600176 600177 600178 600179 600180 600181 600185 600186)
- E6=(600187 600193 600194 600195 600196)
- E8=(600082 600083 600084 600197 600198 600202 600203 600204)
- E10=(600205 600206 600207 600208 600209 600210 600211 600212)
- E12=(600075 600076 600077 600079 600080)
- E16=(600063 600064 600065 600069 600070)
- E20=(600054 600055 600058 600059 600062)
- E25=(600049 600050 600052 600053)
- E32=(600036 600038 600040 600043 600044 600045 600048)
- E40=(630125 630126 630128 630129 630130 630131 630133 630134)
- E50=(630137 630139 630141 630142 630144 630145)
- E60=(630146 630147 630148 630152 630153 630154)
- in total 101 runs

Reminder: Results from the CALICE Analysis Note 049

Study of digital energy reconstruction procedures for the Fe-AHCAL

Scintillator tile sampling HCAL with SiPM 12bit read-out e/π=1.18

- Analogue, digital & semi-digital
- Digital capabilities limited by granularity
- Semi-digital energy reconstruction makes up partially for digital limitations (similar to Software Compensation Techniques)
- Validated the simulation

Backup

CALICE W-DHCAL Trigger Setup in CERN-SPS-H8C

Backup

