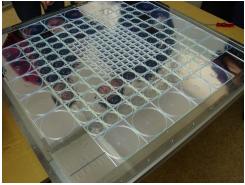
Status of scintillator and SiPM tests at CERN

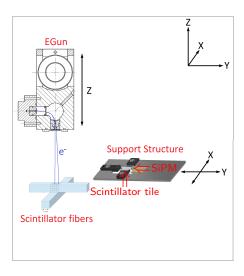
Laszlo Varga (CERN, Eotvos Lorand University HU)

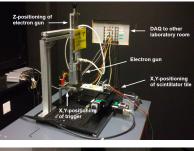
June 2, 2015 CLIC Detector and Physics Collaboration Meeting



Motivation

Motivation

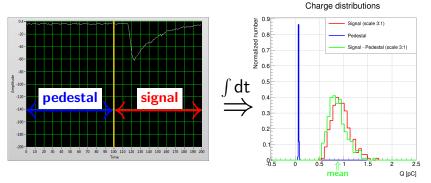

- Improve understanding of scintillators and SiPMs and related systematic effects in CALICE AHCAL test beam experiments
- Characterize new generation of SiPMs
- Characterize impact of scintillator wrappings and tile size on measured light yield



Sensitive layer of the CALICE AHCAL

The setup

The setup at CERN

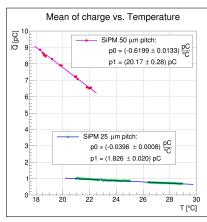


Laszlo Varga (CERN, ELTE HU)

Status of scintillator and SiPM tests at CERN

The method of the charge measurement

The method of the charge measurement


- Two time windows for pedestal and signal measurement
- Convert signal and pedestal response to charge by time integration
- Subtract pedestal from signal event-by-event
- Get the mean of the Signal-Pedestal distribution

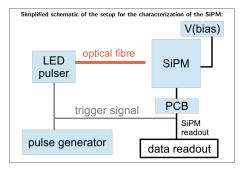
Calibration of the SiPM

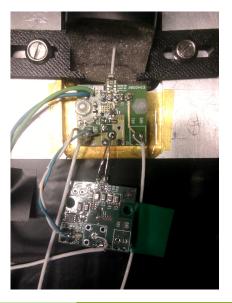
Calibration of the SiPM - Temperature dependence

- SiPMs from Hamamatsu:
 - $\Rightarrow Type No.: S10943-8584(X), Serial No.: 11770,$ $50 \mu m pitch, Number of pixels: 400$
 - \Rightarrow Type No.: S10362-11-025P, Serial No.: 225, $25 \mu m$ pitch, Number of pixels: 1600

- Used the EGun and the wrapped $\Box 20x2$ tile
- Fit \overline{Q} vs T dependence with linear fit function:

$$\Rightarrow \ \overline{Q} \ = \ p0 \cdot T \ + \ p1$$

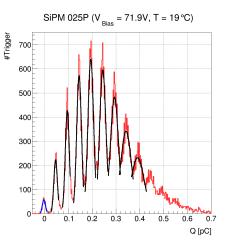

• SiPM with 50 μ m pitch: $\Delta \overline{Q}_{T=19^{\circ}C} \approx 7.4 \frac{\%}{^{\circ}C}$ SiPM with 25 μ m pitch: $\Delta \overline{Q}_{T=19^{\circ}C} \approx 3.7 \frac{\%}{^{\circ}C}$

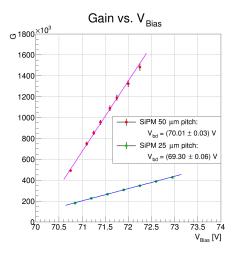

$$\left. \begin{array}{c} \overline{\overline{Q}_{25\mu m}} \\ \overline{\overline{Q}_{50\mu m}} \\ \left|_{\left(T=22 \ ^{o}C \right)} < 1, \ \ \overline{Gain_{50\mu m}} \\ \right|_{\left(T=22 \ ^{o}C \right)} < 1 \end{array} \right|_{\left(T=22 \ ^{o}C \right)} < 1$$

 In order to cope with the reduced gain in the 25µm SiPM, a 2nd amplification stage was installed

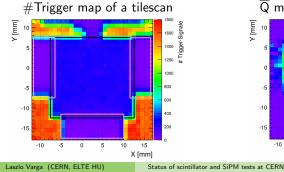
Calibration of the SiPM - Gain

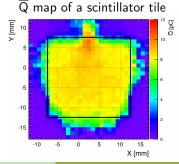
- Replace scintillator tile by optical fiber, which is connected to an LED pulser
- Measure signal from individual photons for gain calibration




Calibration of the SiPM - Gain

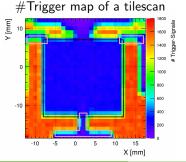
- Measure the charge of single photons
- Measure T simultaneously
 ⇒ Temperature correction of Q^{measured}
 for each measurement
- Fit separate Gaussian functions to the first n peaks (here n=9)
 - \Rightarrow The first peak is the noise peak (i=1)
 - $\Rightarrow i >= 2 \text{ photoelectron peak}$
- Calculate $\overline{\Delta Q} \Rightarrow$ Gain (=G)
- Repeat the method for different V_{Bias} values

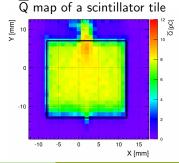

Calibration of the SiPM - Gain


- Fit $G V_{Bias}$ with linear function
- $G \propto (V_{\text{Bias}} V_{\text{bd}})$
- Slope_{50µm}(T_{ref}) \approx 6 · Slope_{25µm}(T_{ref}) \Rightarrow SiPM with 25µm has less V_{Bias} dependence
- $G_{25\mu m}(V_{op}, T_{ref}) \approx 4 \cdot G_{50\mu m}(V_{op}, T_{ref})$

Improvement of the experimental setup

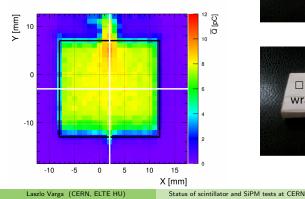
- At the beginning: use "high-material" tile holders to hold the scintillator in place
- The #Trigger map shows the transparency of the support structure
- Even if the electron beam does not hit the scintillator, stray particles produced in the tile holders leak into scintillator resulting in a measurable signal



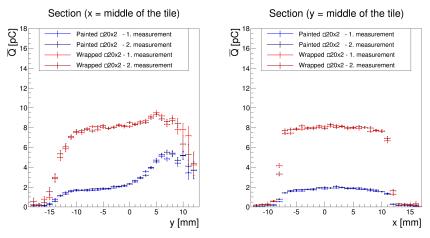

1 tests at CERN CLICdp me

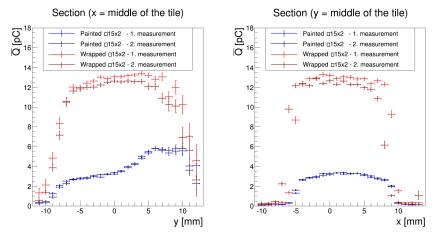
Improvement of the experimental setup

- Reduce material in tile holders close to the tile as much as possible
 - $\Rightarrow~$ The signal from stray particles disappeared on the \overline{Q} map



Comparison of different tiles


- Tested scintillator tiles:
 - \Rightarrow coating:
 - wrapping (3M foil)
 - reflection paint
 - \Rightarrow size:
 - □20x2 mm³
 - $\Box 15x2 \text{ mm}^3$


Slices of the □20mm tiles

- $\bullet\,$ The light yield of the wrapped tile is ~4 times higher than for the painted tile
- $Y\overline{Q}$ section: peak at the SiPM; $X\overline{Q}$ section: uniformity
- The measurements agree within uncertainties

Laszlo Varga (CERN, ELTE HU)

Slices of the □15mm tiles

- Same light yield difference regarding the coating as observed for the \Box 20mm tiles
- The light yield of the □15mm tiles is ~ 1.5 times higher than for the □20mm tiles. This effect is understandable due the aspect ratio of the tiles with different sizes

Laszlo Varga (CERN, ELTE HU)

Summary and Outlook

- Comparison of the SiPMs:
 - ⇒ SiPM with $25\mu m$ pitch has less Temperature dependence compared to the SiPM with $50\mu m$
 - $\Rightarrow SiPM \text{ with } 25\mu m \text{ pitch has less } V_{Bias} \text{ dependence} \\ \text{compared to the SiPM with } 50\mu m$
- Comparison of the tiles:
 - $\Rightarrow~$ The light yield of the wrapped tile is ~4 times higher than for the painted tile independent of the size
 - $\Rightarrow~$ The light yield of the $\Box15mm$ tiles is ~1.5 times higher than for the $\Box20mm$ tiles independent of the coating
- Next steps:
 - \Rightarrow Study smaller scintillator tiles (eg. \Box 10mm)
 - $\Rightarrow\,$ Detailed test of the reproducibility of the tile scans
 - $\Rightarrow~$ Temperature measurements with a Peltier-element chamber
 - \Rightarrow Tile scan with several tiles next to each other to understand cross-talk between the tiles