Update on H->bb/cc/gg at 350 GeV

CLICdp Analysis Meeting - 6 June 2015 Marco Szalay

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

- Introduction
- Event selection and MVA performance
- Template Fit Status
- Background modelization
- Conclusion

Introduction

Main H production channels at 350 GeV:

- Higgs strahlung

Event Selection

BDT Performance

BDT Performance

Efficiency Improvements

Hvv cutflow	bb	сс	gg	qq	qqlv	qqvv
nocuts	14456	729	2185	1.2x10 ⁷	2.95x10 ⁶	162300
60 < E _{Reco} < 260	14449	728	2183	9.1x10 ⁶	1.6x10 ⁶	158484
80 < H _M < 180	14174	714	2147	6.9x10 ⁶	741522	129504
BDT (Hqq) < 0.07	14173	714	2147	6.9x10 ⁶	741522	129504
BDT (Hvv) > 0.11	8773	401	1071	4621	1975	1843
Total Efficiency	61%	55%	50%	3.7X10-4	6.6x10-4	1.1%

Hqq cutflow	bb	сс	gg	qq	qqqq
nocuts	26209	1322	3961	1.2x10 ⁷	2.8x10 ⁶
50 < Z _M < 130	25621	1294	3869	1.5x10 ⁶	2.7x10 ⁶
70 < H _M < 200	25615	1293	3869	1.37x10 ⁶	2.7x10 ⁶
BDT (Hvv) < 0.08	25338	1288	3859	1.37x10 ⁶	2.7x10 ⁶
BDT (Hqq) > 0.11	13434	566	1630	49994	2912
Total Efficiency	51%	43%	41%	3.9X10 ⁻³	0.1%

Update on H->bb/cc/gg at 350 GeV

Template Fit

- Binned maximum likelihood fit on multi-dimensional space: b and c likelihoods and H_{Pt}
- Assume Poissonian fluctuation for each data bin:

$$P_{ijk} = \frac{\mu^n e^{-\mu}}{n!}$$

with n = number of data entries in bin ijk and $\mu = \sum w_m T_m$ for the same bin

- Then the Likelihood is the product of P_{ijk} in all bins
- Find the w_m that maximize this value

Fit Methods

- 1. Log likelihood in 3D space (b-like, c-like and Hpt)
- 2. Log likelihood in multiple 1D projections
- 3. MCMC in multiple 1D projections (BAT toolkit)

 All give similar results for coarse binning (~10-12% in Hvv:H->cc), only 3D Log likelihood gets better with finer binning, probably due to template artifacts

ee->qq background sample, unnormalized

Remapping Results

ZH:H→bb

Remapping Results

Update on H->bb/cc/gg at 350 GeV

Modeling the background

- Using the "mockup" background increase the uncertainty of H branching considerably, BUT it is very difficult to segment the space and normalize since the "cliffs" are very close to the H->cc signal region
- Using dedicated Z->qq background samples to produce a highstatistics template with the right shape also reduces precision
- Smearing the histogram with smoothing functions

Conclusions

- Selection efficiency has increased drastically thanks to better training statistics for H->cc and H->gg
- Analysis now fully implements both Hvv and Hqq cutflow and performs a simultaneous fit of the templates of both
- Uncertainty on cc did not scale linearly with improved efficiency (as would be expected from background-driven data sample) The shape of the flavor space seems to have changed a lot