

Reconstruction and Core Software Status and Plans

F. Gaede

CERN/DESY

CLICdp Collaboration Meeting CERN, June 2-3, 2015

F. Gaede (CERN/DESY)

Reconstruction and Core Software CLIC Coll.Mtg. 02-03.06.15

1 / 17

Outline

Core Tools

- DD4hep and Icgeo
- Marlin and DD4hep

DDRec

- DDRec detector description
- Surfaces for Tracking

Track reconstruction

- DDKalTest and IMarlinTrk
- first results

4 Calorimeter Reconstruction - PFA

5 Summary & Outlook

F. Gaede (CERN/DESY)

Reminder: DD4Hep and Icgeo

- DD4hep provides detector geometry description for
 - simulation via DDG4
 - reconstruction via DDRec
- Icgeo is the common LC detector description package for ILD and CLIC
- simply python script for configuring and running the simulation: ddsim.py
- some common (CLICdp/ILD) geometry constructors for sub-detectors.
 - e.g. beamcal, ECal, Hcal,...
- first version of CLICdp simulation model exists (talk M.Petric)

DD4hep - recent developments

- about to prepare new DD4hep release (v00-12)
- many changes since las release v00-11, e.g.
 - DDRec interface to eventually replace GEAR
 - SurfaceManager to access surfaces as needed for tracking
 - updated to Geant4 10.x series (requires at least Geant4 9.6)
 - started preparation for ROOT 6 (next release !?)
 - $\bullet\,$ updated to optionally use C++11
 - introduced component structure: only link against what you use
 - introduced functionality for nested detectors and envelopes
 - added Birk's law for scintillator calorimeters
 - lots of fixes and improvements ...

• DD4hep is by now mostly feature complete for running Linear Collider simulation and reconstruction

• plan to have mostly bug fix releases for the near term future

Validation of DD4hep/lcgeo simulation

- Example:
- MIP hit energies in CLIC HCal (N.Nikiforou)
 - (10 GeV mu^- , uniform in ϕ)
- distribution consistent with two Landau distributions: one from the muon and a secondary from delta electrons

• more validation to come once model is ready...

- currently Marlin depends on EDM and geometry, i.e. LCIO and GEAR
- try to avoid an additional dependency on DD4hep:
- created small standalone Marlin package: MarlinDD4hep
- this allows to have Marlin packages that do not need the geometry to not have to link against DD4hep

Note:

Every Marlin application that uses DD4hep, needs to run the InitializeDD4hep processor as first processor in the steering file !

DDRec detector description

- simple data structures with high level view for reconstruction
 - attached to DetElements
 - similar to GEAR parameter classes

Data Structure	Detector Type	Example
ConicalSupportData	Cones and Tubes	BeamPipe
FixedPadSizeTPCData	Cylindrical TPC	TPC
LayeredCalorimeterData	Sandwich Calorimeters	ECal, HCal, fwd Calos
ZPlanarData	Planar Silicon Trackers	VXD, SIT, SET
ZDiskPetalsData	Forward Silicon Trackers	FTD

- can run exisiting (Gear based) Marlin processors on new simulation models: digitization, tracking, PFA,...
- eventually these data structs should (will) replace Gear

DDRec - tracking surfaces

- u,v, normal, origin
- coordinate transforms:
 - $(u,v) \leftrightarrow (x,y,z)$
- material effects

for multiple scattering and energy loss

- use averaged properties A, Z, ρ, X_0, λ
- with path lengths

$$s_{1,2} = thickness_{inner,outer}/cos(lpha)$$

tracking surfaces in CLIC model

Challenges for tracking

- large number of surfaces (> 19000): need efficient navigation
- spiraling vertex endcap: need new ideas for pattern recognition

DDKalTest

• DDKalTest provides generic interface between DD4hep and KalTest

- uses DDRec::Surfaces instead of GEAR file
- DD(Parallel)PlanarMeasLayer
 - planar measurement layers (parallel and orthogonal to z)
 - works for 1D and 2D hits: VXD, SIT, SET, FTD, (all-silicon-tracker)
- DDCylinderMeasLayer
 - cylindrical measurement layers parallel to z: TPC
- with DDKalTestcan run the KalTest fitter on any tracking detector that has the DDRec::Surfaces implemented
- no additional glue code needed!

IMarlinTrk Interface and DDRec

- pattern recognition separated from fitting via IMarlinTrk
- currently still use GEAR for (little) geometry information for patrec
 - $\bullet\,$ rather straight forward to replace w/ DDRec DetectorData classes
- updated all tracking processor to allow for chooosing the fitting type:
 - SiliconTracking, ForwardTracking, Clupatra, FullLDCTracking, Refitting, ...
- F. Gaede (CERN/DESY)

Reconstruction and Core Software CLIC Coll.Mtg. 02-03.06.15 11 / 17

Track fitting in an all Si-Tracker

- expected track fitter to also work for all Si-tracker of CLIC out of the box
 - however many single µ-track fits failed and pulls were observed to be not correct
- used simplified tracking model with a large Si-strip barrel tracker to develop new

Fitting strategy for CLIC tracker

- 1D hits provide no constraint in z and thus cannot be used to initialize track parameters
- need to fit inside-out starting with vertex pixel hits
- finally smooth back to third hit and fit inside from there

Track fitting in new CLIC model

- observe reasonably nice looking pull distributions for track parameters in the detailed CLIC tracker model (R.Simoniello)
- (single *mu*⁻, 5 GeV at θ = 85 deg)

 fairly confident that new fitting code using the DDRec::Surface and material averaging works

• will focus on track finding from now on ...

F. Gaede (CERN/DESY)

Reconstruction and Core Software

option 1

• implement a track cheater (MCTruth) to decouple from the development of the rest of reconstruction chain (PFA)

option 2

- continue development of ILD CA-based Vertex pattern recognition for finding seed tracks followed by extrapolation outwards to Silicon Barrel Tracker (R.Simoniello)
- try and apply (adapt) ILD ForwardTracking to endcaps

option 3

- develop a CLIC specific pattern recognition by adopting and modifying the CA based pattrec to the specific layout of the new CLIC detector model
- investigate other ideas (conformal mapping, Hough Transform, etc...)

First look at real events

- can find more than one track with option 2 in hadronic Z-event (R.Simoniello)
- time to start now to seriously develop, test and debug the pattern recognition

F. Gaede (CERN/DESY)

- strategy for calorimeter reconstruction:
- adopt MarlinPandora to use DDRec::LayeredCalorimeter instead of GEAR
- use cheated tracks as input to Pandora
- apply calibration procedure for PandoraPFA
- \Rightarrow fairly straigh forward (but of course work)
- ullet \Rightarrow time to start now

example $t\overline{t}$ event in ILD simulated w/ DD4hep and

reconstructed in Marlin

Summary & Outlook

- core software tools DD4hep and lcgeo are essentially feature complete
- DDRec interface to reconstruction now also finalized
- track fitting using DDRec::Surfaces demonstrated to work in CLIC barrel tracker

Next major steps

- increase the efforts on development of the pattern recognition
- work on getting PandoraPFA to work new simulation model

Outlook - Goal

- have a running version of the simulation and reconstruction running this summer:
- ambitious but feasible