Status of the Higgs paper

Christian Grefe, Strahinja Lukic, Sophie Redford, Philipp Roloff, Frank Simon, Mark Thomson

CLICdp Collaboration Meeting, 02/06/2015, CERN

Updated paper structure

- 1.) Introduction complete
- 2.) Experimental Environment at CLIC complete
- 3.) Overview of Higgs Production at CLIC complete
- 4.) Monte Carlo, Detector Simulation
- and Event Reconstruction complete
- 5.) Higgs Production at \sqrt{s} = 350 GeV some analyses ongoing
- 6.) WW-fusion at $\sqrt{s} > 1$ TeV
- 7.) ZZ-fusion
- 8.) Top Yukawa Coupling
- 9.) Double Higgs Production
- 10.) Higgs Mass
- 11.) Combined Fits
- 12.) Summary and Conclusions

some analyses ongoing

complete

complete

some numbers missing

analyses ongoing

waiting for final numbers

waiting for final numbers

Current status

Most of the comments collected during the last CLIC workshop at the end of January 2015 have been implemented.

Remaining issues:

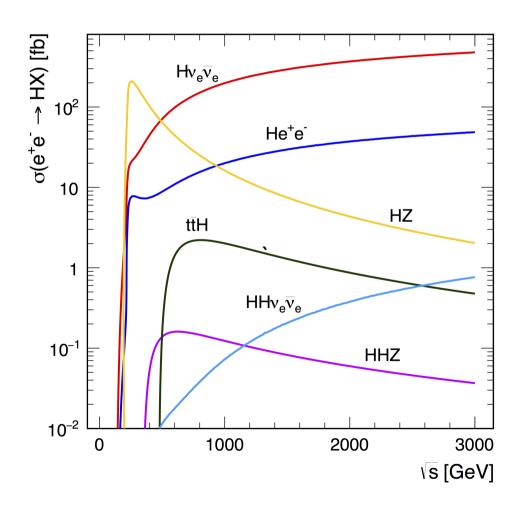
- The analyses of H→bb/cc/gg at all energies and H->WW* at 350 GeV are still work in progress (Sec. 5.2.1, 5.2.3, 6.1 and 10).
- The event displays for CLIC_SiD (Figs. 17 and 21) will be redone.
- A few figures still need to be adapted to the common CLICdp style.
- Section 11 on combined fits still describes the numbers shown at LCWS14. This will be updated once all analyses are finalised.

Nightly builds:

http://proloff.web.cern.ch/proloff/clichiggspaper/

Author list

Higgs Physics at the CLIC Electron-Positron Linear Collider

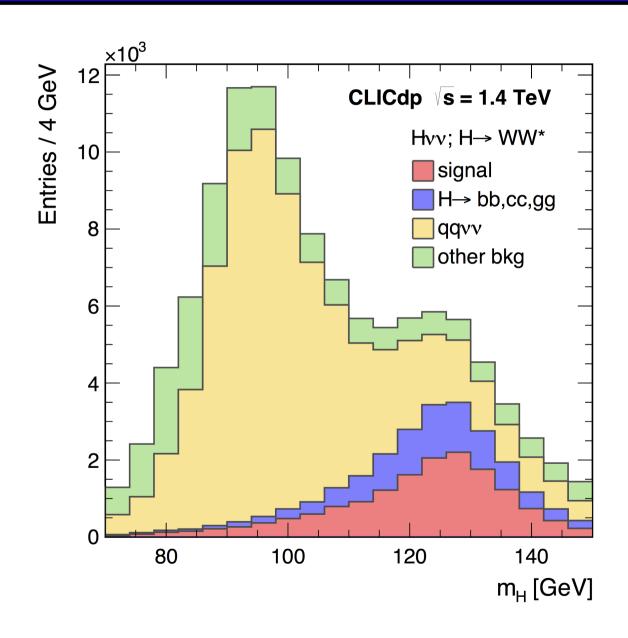

```
H. Abramowicz<sup>24</sup>, A. Abusleme<sup>22</sup>, K. Afanaciev<sup>20</sup>, G. Alexander<sup>24</sup>, N. Alipour Tehrani<sup>9</sup>,
C. Balázs<sup>2</sup>, Y. Benhammou<sup>24</sup>, M. Benoit<sup>10</sup>, B. Bilki<sup>4</sup>, J.-J. Blaising<sup>16</sup>, M. Boland<sup>2</sup>,
M. Boronat<sup>23,29</sup>, O. Borysov<sup>24</sup>, I. Božović-Jelisavčić<sup>25</sup>, M. Buckland<sup>17</sup>, P. Burrows<sup>21</sup>,
T. Charles<sup>2</sup>, W. Daniluk<sup>12</sup>, D. Dannheim<sup>9</sup>, M. Demarteau<sup>4</sup>, M.A. Díaz<sup>22</sup>, G. Eigen<sup>5</sup>,
K. Elsener<sup>9</sup>, U. Felzmann<sup>2</sup>, M. Firlej<sup>3</sup>, E. Firu<sup>14</sup>, T. Fiutowski<sup>3</sup>, T. Frisson<sup>9</sup>,
J. Fuster<sup>23,29</sup>, M. Gabriel<sup>19</sup>, F. Gaede<sup>9,26</sup>, I. García<sup>23,29</sup>, V. Ghenescu<sup>14</sup>, J. Goldstein<sup>7</sup>,
S. Green<sup>8</sup>, C. Grefe<sup>9,*</sup>, M. Hauschild<sup>9</sup>, C. Hawkes<sup>6</sup>, M. Idzik<sup>3</sup>, G. Kačarević<sup>25</sup>,
S. Kananov<sup>24</sup>, W. Klempt<sup>9</sup>, B. Krupa<sup>12</sup>, S. Kulis<sup>9</sup>, T. Laštovička<sup>13</sup>, T. Lesiak<sup>12</sup>,
A. Levy<sup>24</sup>, I. Levy<sup>24</sup>, L. Linssen<sup>9</sup>, S. Lukić<sup>25,*</sup>, V. Makarenko<sup>20</sup>, J. Marshall<sup>8</sup>, K. Mei<sup>8</sup>,
G. Milutinović-Dumbelović<sup>25</sup>, J. Moroń<sup>3</sup>, A. Moszczyński<sup>12</sup>, D. Moya<sup>23,28</sup>, A. Münnich<sup>9</sup>,
A.T. Neagu<sup>14</sup>, N. Nikiforou<sup>9</sup>, K. Nikolopoulos<sup>6</sup>, M. Pandurović<sup>25</sup>, B. Pawlik<sup>12</sup>, I. Peric<sup>15</sup>,
M. Petric<sup>9</sup>, S.G. Poss<sup>9</sup>, T. Preda<sup>14</sup>, D. Protopopescu<sup>11</sup>, R. Rassool<sup>2</sup>, S. Redford<sup>9,*</sup>
J. Repond<sup>4</sup>, A. Robson<sup>11</sup>, P. Roloff<sup>9,*</sup>, E. Ros<sup>23,29</sup>, O. Rosenblat<sup>24</sup>, A. Ruiz-Jimeno<sup>21</sup>
A. Sailer<sup>9</sup>, W.-D. Schlatter<sup>9</sup>, D. Schulte<sup>9</sup>, N. Shumeiko<sup>20</sup>, E. Sicking<sup>9</sup>, F. Simon<sup>19,*</sup>,
R. Simoniello<sup>9</sup>, P. Sopicki<sup>12</sup>, S. Stapnes<sup>9</sup>, J. Strube<sup>9</sup>, K.P. Świentek<sup>3</sup>, M. Szalay<sup>19</sup>
M. Tesař<sup>19</sup>, M. Thomson<sup>8,*</sup>, J. Trenado<sup>23,27</sup>, U.I. Uggerhøj<sup>1</sup>, N. van der Kolk<sup>19</sup>,
E. van der Kraaij<sup>5</sup>, I. Vila<sup>23,28</sup>, M.A. Vogel Gonzalez<sup>22</sup>, M. Vos<sup>23,29</sup>, J. Vossebeld<sup>17</sup>.
M. Watson<sup>6</sup>, N. Watson<sup>6</sup>, H. Weerts<sup>4</sup>, J. Wells<sup>18</sup>, L. Weuste<sup>19</sup>, A. Winter<sup>6</sup>, T. Wojtoń<sup>12</sup>,
L. Xia<sup>4</sup>, B. Xu<sup>8</sup>, L. Zawiejski<sup>12</sup>, I.-S. Zgura<sup>14</sup>
<sup>1</sup>Aarhus University, Aarhus, Denmark
 <sup>2</sup>Australian Collaboration for Accelerator Science (ACAS)
<sup>3</sup>Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Cracow, Poland
<sup>4</sup>Argonne National Laboratory, Argonne, USA
<sup>5</sup>Department of Physics and Technology, University of Bergen, Bergen, Norway
<sup>6</sup>School of Physics and Astronomy, University of Birmingham, United Kingdom
<sup>7</sup>University of Bristol, Bristol, United Kingdom
<sup>8</sup>University of Cambridge, Cambridge, United Kingdom
9CERN, Geneva, Switzerland
<sup>10</sup>Département de Physique Nucléaire et Corpusculaire (DPNC), Université de GenÚve, Geneva, Switzerland
<sup>11</sup>University of Glasgow, Glasgow, United Kingdom
^{12} The\ Henryk\ Niewodniczański\ Institute\ of\ Nuclear\ Physics\ Polish\ Academy\ of\ Sciences\ ,\ Cracow,\ Poland
<sup>13</sup>Institute of Physics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
<sup>14</sup>Institute of Space Science, Bucharest, Romania
<sup>15</sup>Karlsruher Institut für Technologie (KIT), Institut für Prozessdatenverarbeitung und Elektronik (IPE), Karlsruhe, Germany
<sup>16</sup>Laboratoire d'Annecy-le-Vieux de Physique des Particules, Annecy-le-Vieux, France
<sup>17</sup>University of Liverpool, Liverpool, United Kingdom
<sup>18</sup>Physics Department, University of Michigan, Ann Arbor, Michigan, USA
<sup>19</sup>Max-Planck-Institut für Physik, Munich, Germany
<sup>20</sup>National Scientific and Educational Centre of Particle and High Energy Physics, Belarusian State University, Minsk, Belarus
<sup>21</sup>Oxford University, Oxford, United Kingdom
<sup>22</sup>Pontificia Universidad Católica de Chile, Santiago, Chile
<sup>23</sup>Spanish Network for Future Linear Colliders
<sup>24</sup>Raymond & Beverly Sackler School of Physics & Astronomy, Tel Aviv University, Tel Aviv, Israel
<sup>25</sup>Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
<sup>26</sup>DESY, Hamburg, Germany
```

Thanks a lot Michael!

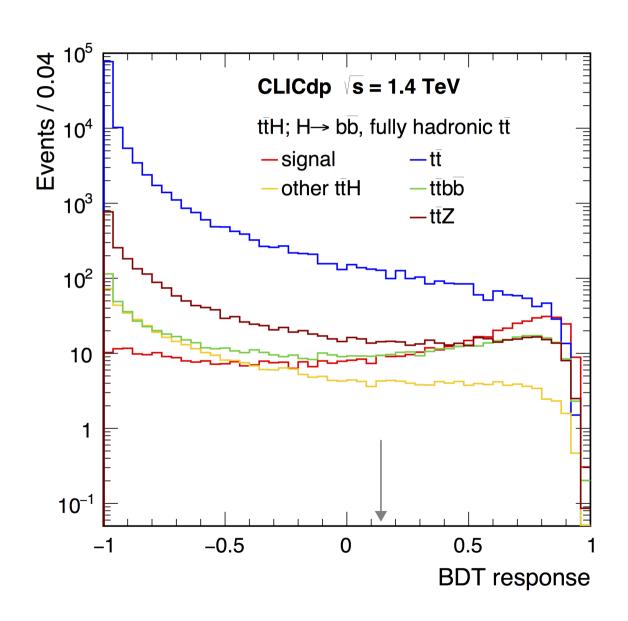
²⁷University of Barcelona, Barcelona, Spain
²⁸IFCA, CSIC-University of Cantabria, Santander, Spain
²⁹IFIC, CSIC-University of Valencia, Valencia, Spain

Consistent Higgs mass

All numbers, tables and figures in the introductory part (Sec. 1 - 4) were updated assuming m(H) = 126 GeV


Example: cross sections for various Higgs production Processes (also ISR included now!)

New table style


Process	σ/fb	$arepsilon_{ ext{presel}}$	$arepsilon_{ ext{BDT}}$	$N_{ m BDT}$
$e^+e^- \rightarrow H\nu_e\overline{\nu}_e, H \rightarrow \gamma\gamma$	0.56	84.9%	40.4%	337
$e^+e^- o \nu \overline{ u} \gamma$	29.5	34.2%	2.5 %	1110
$\mathrm{e^{+}e^{-}} \rightarrow \nu \overline{\nu} \gamma \gamma$	17.3	31.0%	2.6%	688
${\rm e^{+}e^{-}} \rightarrow \gamma\gamma$	27.2	19.8%	0.14%	55
$\mathrm{e^{+}e^{-}} \rightarrow \mathrm{e^{+}e^{-}} \gamma$	289.0	9.2%	0.06%	265
$\mathrm{e^{+}e^{-}} \rightarrow \mathrm{e^{+}e^{-}} \gamma \gamma$	12.6	5.2%	0.01%	2
$\mathrm{e^{+}e^{-}} \rightarrow \mathrm{q} \overline{\mathrm{q}} \gamma$	67.0	0.8%	0.0%	0
$\mathrm{e^{+}e^{-}} \rightarrow \mathrm{q} \overline{\mathrm{q}} \gamma \gamma$	16.6	1.4%	0.01 %	2

Example: $H \rightarrow \gamma \gamma$ at 1.4 TeV

New figure style (1)

New figure style (2)

Comments and suggestions are very welcome!