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Scales

Length parsec (pc) = 3.3 light year = 3.1 x10'8 ¢cm
= 2.1 xI10° a.u.
| a.u.= Earth Sun distance ~ 3.1 x10% cm
Pluto ~ 100 a.u.
Nearest star (Proxima Centauri) ~ |.2 pc
center of Milky way ~ 8 kpc

Diameter of the Milky way ~ 30 kpc
nearest galaxy (Sagitarius dwarf in local group) ~ 30 kpc
nearest galaxy spiral (M31) ~ 800 kpc
size of the local cluster ~ 3 Mpc
distance from the nearest cluster (Virgo) ~ |5 Mpc
homogeneity scale ~ 100 Mpc

Hubble scale = ¢/Ho ~ 4.2 Gpc




Observations (for instance Sloan Digital Sky Survey)
tell us that there is a reference frame where
Universe at scales ~ 100 Mpc appears
- homogeneous and Isotropic

At scales <<|00 Mpc many structures can be
distinguished
Filaments, Voids, Superclusters, Clusters, Galaxies ...



http://www.atlasoftheuniverse.com/universe.html
http://www.atlasoftheuniverse.com/universe.html

Study first the Universe at large scales (> 100 Mpc)
deviation from homogeneity are small perturbations
(up to scales .5 Mpc)
at smaller scales nonlinear methods are required

Small deviation from primordial homogeneities

are amplified by gravitational instability:
gravitational instability is efficient when the Universe is
non relativistic (matter dominated)




Cosmology needs gravity

GR: Dynamics of spacetime
Dynamical variable: the metric field gy

ds® = guv dxtdx”

“Matters (EMT) tells spacetime (metric) how to
curve” (Wheeler)

1
R,UV — iRgMV — T,LLV

Curvature = [L2] ~ 9 (9 '9g) + (97 "'09) (9~ '99)




ds” = Ny dxtdr” = —dt® + (dx')? + (dz?)? + (dx®)?
= —dt* 4+ dr® +r? (d92 + sin §° dgpz)

da
dT

uw’o,ut =0 ut =

u'u"n,, = —1 massive particles u“u”n,, =0 massless particles

uw’V,ut =0 uu” g, = —1 ut = —

dT

1
Vout =o,ut + 10 u® Iy = 59“5 (Ov9ap + 0agvs — 039va)

for a scalar field: V.o =0,¢




Bianchi identities

VY(Ruyw — 3Rguw) =V"Gu =0 — VT, =0

1

0Smatter = 5 /d4x\/§Tuu 0g"”

1
S = /d4£€\/§ {—§g“yﬁu¢5’u¢ — V(Qb)}
Scalar field

1
{_§ga56a§baﬁgb — V} Juv + 8,u§b au¢



Perfect Fluid

T,LLI/ — PYuv + (p + ,0) Uy Uy u2 — rLL'UJ’U,Vg’L“/ = —1

Momentum density measured by an observer
with four velocity vH

14
pv'U

Energy density measured by an observer
v _ UV
with four velocity v¥ Ly v™v

Energy density seen by an observer
co-moving with fluid p="T,,u"u"

Pressure part leaves in Ty = pupuy +p (Guv + upuy)
space orthogonal the

fluid velocity (G + Uy )




Perfect Fluid in flat space

Take a homogeneous configuration (no space dependence)

ut =(1,0,0,0)

Too=p | Ti = p Oj

For the scalar field

- in flat space compute the EMT and check that it is
conserved
- do the same in the case the metric is generic

- compute the EMT for a configuration of the form ¢(t)
and check that is perfect fluid, find then p and p




Friedmann-Lemaitre-Robertson-Walkwer (FLRWV)

Observed Homogeneity and Isotropy =
at any given time t, the hypersurface (3dim.)

t=const. has and is
m)

maximally symmetric 3d geometry =
3d curvature is constant

ds® = —dt* + a(t)*d%? d¥* = ~;; dz'dx

Observers with 4-velocity uv=(1,0,0,0) sees the
Universe homogenous and isotropic

dr?

1 — kr?

dy? = Vi dr'dx’ =

- r? [dO” + sin(6)” dy” ]




Observers with 4-velocity uv=(1,0,0,0) follow geodesics
Exercise: check that at least in the case case k=0

Overwhelming evidence that:
our Universe is spatially flat (k=0)

For spatially flat (k=0) and open (k<0) Universe
the spatial volume is infinite
For a spatially closed (k >0) Universe
the spatial volume is finite

The distance d(t,r) between the points:
(t,0,0,0) and ,r,0,0

dt.r) = [ds=alt) [ = =t

1 — kx?)

for) =71 feso(r) =sin (&Y% r)  foco(r) =sinh (k]2 )




Hubble Parameter

d(t,v) a fr(r)

d(t,7) afi(r) a

Hubble constant =H today = Ho=h 100 km s*' Mpc’!
h = 0.673(12)

H >0 the Universe is expanding




Propagation of light in a FLRW Universe

. : . dx* y
4-velocity of photon (radial motion) u* = —7 utu¥ g, =u® =0

dr? dt dr?
= ds® =0 = —dt? 2 = — =
” e (1 —kKr?) a (1 —kr2)l/2

dr
(1 — Kk7r?)

1/2 — fk(TE)

/t0+5t0 dt /t0‘|‘5t0 dt
tptoty @ . a



Expanding universe: ag < ap then Vo < VE

Ve — o
z = = 142z =
140 ap

a

Setting t as the emission time ag =a(t) and ao=|
we can replace time with redshift t(z)




Hubble Law

Atsmallz a(t)=ag— (to —t)ag+--- =ap [l — Ho(tg —t)] + - -

(1+2)at)=ay = (Q4+2)[1—Hyto—t)]=1+---

z=Hy(to—t)c '+ = Hod+ -

In general galaxies have peculiar velocities
due to local gravitational field

V= Vcosm™ Vpeculiar

To overcome pec. velocities ~ 100 Km/s
one needs zc >> 00 Km/s

known galaxies (Hubble telescope) of
z~11.9 |3 bilion years old




Original Hubble Diagram
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FLRWV Dynamics

Solve Einstein equations with matter represented
by a

Too = p To; =0 155 = Dij

EMT conservation  v“T,, =0 gives (check !!)

p+3H (p+p)=p+3H(14+w)p=20 D=wp

p = w p is called fluid equation of state

Or(pa’) = —pds(a?) dU = 6L + dS




EMT conservation can be integrated for w constant

J(f) = P NB: t=to with a(to)=1
a3(w+1) Do present density

EMT given by T = =N g Vacuum energy

Derived from the action S = —/d4$\/§ A
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Einstein Equations

1
RIUJ/ — 5 Rg,uy — 871G TMV

Symmetry:

00

]

Actually from 00 eq. + EMT conservation one gets ij
we can forget about ij egs.




Newtonian “Derivation”

Take a bunch of particles with homogeneous density p
the energy of a test particle of mass m at radius r

MmG m ., mG 4nr’
_ — T IO 3

Matter conservation

EMT conservation
non-rel. matter for p=0

>:O = p+3H p=0



Critical Density

G G p,
= = (p—pe) = = (- 1) = H*(Q - 1)

3 H? p
C p— Q - —
P 87G Pe

At any time the sign of K is the same ()-1
taking t=to (now)

3H
k>0 = pg> poec= # ~ h”1.8 % 10_29gr cm ™

k<0 = P00 < Poc

k=0 = po=poc

Spatial curvature connected present amount of matter
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2d Examples
Take a 2-sphere embedded in a 3d Euclidian space

r? +y? + 27 = b dl* = dx* + dy* + dz°
How to find the infinitesimal distance (metric) on the 2-sphere !

Solve the constraint and plug it back on embedding space
metric

T =T COS r =7 siny z = +(b? — r?)1/2

— dx = dr cosp — rdy sin g dy = rdy cosp + dr sin g
dz = F(b2 — )"V 2 dr

d2
! Ir2d¢

2

That is the case K=b-2>0, positive constant curvature

For large very large b, k=0, curvature 2d plane



Take an hyperboloid embedded in a 3d Minkowski space

2+ y? — 2% = —b? dlI* = —dz* + dz?* + dy?

T =T COS Yy = r sSin - (b2 4 r2) /2

= dx = dr cosp — rdyp sin dy = rdy cosp + dr sin g
(B2 + r2) T 2 dr

| .2
|

r dp?

That is the case kK=-b2 <0, negative constant curvature

Lobachevski space




The fluid can have many component

P=Y Pn  DPn=Wnpn

n=1

One can measure pPo by counting matter and pPo < Poc

CMB observations tell us that K is very small
The missing component is called
Dark Energy

Today’s Content

(Qpe=0.68 (Qraq=10"
glnon-rel-matt= Qdark matter T Qbaryons =0.27+0.048 =0.32




Solutions (k=0)

P ag(w+1) generlc \"\"

Plug into the equation for a and solve it !

éLQ B 87tG P0

a2 3 a3(w—|—1)

t 3(w2—|—1)
a(t) = (—)
to

Non-relat. matter dominated Universe, w=0

Radiation dominated Universe, w=1/3




Solutions (k=0)

The case w=-1 is special. Universe dominated by a CC

-2
:%AE)\Q = a(t) = e’

de Sitter Universe

ds® = —dt* + e (dz? + dy?* + dz?)

In general the 4d scalar curvature is for FLRW

Rgs = 12)2% > 0

de Sitter Universe has 4d constant positive
curvature !




Milne Universe

Take the vacuum: p=0

K has to be <0 a(t) = |k|V/2 ¢

- dr?
ds® = —dt* + |k| t*
i IR T e

nys (dc92 + sin 62 dng)

H=t" a =0 = R ilne = 0

1/2

Setting T=1t(1+|k|r?) s= k|2 ¢tr

ds* = —dr? + ds* + s° (d92 + sin #? dgpQ)

A portion of Minkowski space in disguise




Acceleration

a 4n G
—— = 3p) = q H?
. 5 (P +3p)=g¢

If the Universe is accelerating a certain time t when q(t) <0

or p+3p<0 = w<-1/3 negative pressure

With multiple components

_47TG
- 3 H?

(p+&0=1

q (p+3p) =

2 P

acceleration =




Data (SNe la) tell us that presently the Universe (flat) is
accelerating

We have NR-matter+ Dark Energy

1 3
QO:§‘|‘§UJDEQDE<O

If Dark Energy is a Cosmological Constant then wpe = wa =

1
QA>§




Time Since
Big Bang

present

Era of
Galaxies

1 billion

500,000
years

3 minutes

Nucleosynthesis

0.001 seconds
Particle Era

10" seconds
Electroweak Era

1038 seconds

10-*3 seconds

neutron — ggmy  electron -
proton ——§=& neutrino —

Copyright @ Addison Wesley.

GUT Era

Planck Era

antiproton
antineutron

e

Major Events
Since Big Bang

slars,
galaxies
and clusters
(made of
atoms and
plasma)

atoms and
lasma
stars
in
to form)

lasma of
ydrogen and
& helium nuclei
plus electrons

protons, neutrons,
electrons, neutrinos

. (antimatter rare)

elementary particles

Humans
observe
the cosmos.

First galaxies
form. -

premons
ons fly free
and become
microwave
background.

Fusion ceases;
Ok By oden,
75% .
25% helium, by
mass.

Matter annihilates
antimatter.

Electromagnetic and weak
forces become distincl.

Strong

force booomos

dlsthct B:m
causing inflation of
universe.

antielectrons <&+




_ THE BIG BANG THEORY
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hydrogen and
helium gas
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the giant clouds
that will become
galaxies; smaller
clumps of gas
collapse to form
the first stm S

Still too hot Electrons

to form into combine with
atoms, charged protons and
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universe is a can finally
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AS galaxies

cluster
together under
gravity, the first
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will eventually
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